Properties

Label 2-235200-1.1-c1-0-107
Degree $2$
Conductor $235200$
Sign $1$
Analytic cond. $1878.08$
Root an. cond. $43.3368$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 3·13-s + 2·17-s − 19-s + 2·23-s − 27-s + 8·29-s − 8·31-s − 7·37-s − 3·39-s + 8·43-s − 10·47-s − 2·51-s + 14·53-s + 57-s − 10·59-s − 7·61-s + 5·67-s − 2·69-s − 12·71-s − 11·73-s − 7·79-s + 81-s − 14·83-s − 8·87-s − 6·89-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 0.832·13-s + 0.485·17-s − 0.229·19-s + 0.417·23-s − 0.192·27-s + 1.48·29-s − 1.43·31-s − 1.15·37-s − 0.480·39-s + 1.21·43-s − 1.45·47-s − 0.280·51-s + 1.92·53-s + 0.132·57-s − 1.30·59-s − 0.896·61-s + 0.610·67-s − 0.240·69-s − 1.42·71-s − 1.28·73-s − 0.787·79-s + 1/9·81-s − 1.53·83-s − 0.857·87-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 235200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(235200\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1878.08\)
Root analytic conductor: \(43.3368\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 235200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.374632077\)
\(L(\frac12)\) \(\approx\) \(1.374632077\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 7 T + p T^{2} \) 1.79.h
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.84930652130378, −12.48471799937566, −11.88358518728922, −11.60222913097469, −11.02449428088111, −10.56236054865364, −10.29552204646474, −9.748639646728831, −9.056896107638494, −8.733896329124365, −8.316202918264227, −7.546191697430215, −7.246240820750751, −6.702815966621516, −6.112438095184554, −5.781998914743921, −5.246691967710354, −4.676867479936391, −4.186544606524896, −3.584173723227354, −3.068253465388014, −2.444624830515103, −1.517364185778074, −1.273695715504261, −0.3489269157994069, 0.3489269157994069, 1.273695715504261, 1.517364185778074, 2.444624830515103, 3.068253465388014, 3.584173723227354, 4.186544606524896, 4.676867479936391, 5.246691967710354, 5.781998914743921, 6.112438095184554, 6.702815966621516, 7.246240820750751, 7.546191697430215, 8.316202918264227, 8.733896329124365, 9.056896107638494, 9.748639646728831, 10.29552204646474, 10.56236054865364, 11.02449428088111, 11.60222913097469, 11.88358518728922, 12.48471799937566, 12.84930652130378

Graph of the $Z$-function along the critical line