Properties

Label 2-232730-1.1-c1-0-10
Degree $2$
Conductor $232730$
Sign $-1$
Analytic cond. $1858.35$
Root an. cond. $43.1086$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s − 5-s + 2·6-s − 5·7-s − 8-s + 9-s + 10-s + 2·11-s − 2·12-s − 13-s + 5·14-s + 2·15-s + 16-s − 17-s − 18-s − 20-s + 10·21-s − 2·22-s − 6·23-s + 2·24-s + 25-s + 26-s + 4·27-s − 5·28-s + 8·29-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.447·5-s + 0.816·6-s − 1.88·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.603·11-s − 0.577·12-s − 0.277·13-s + 1.33·14-s + 0.516·15-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 0.223·20-s + 2.18·21-s − 0.426·22-s − 1.25·23-s + 0.408·24-s + 1/5·25-s + 0.196·26-s + 0.769·27-s − 0.944·28-s + 1.48·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 232730 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 232730 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(232730\)    =    \(2 \cdot 5 \cdot 17 \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(1858.35\)
Root analytic conductor: \(43.1086\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 232730,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 + T \)
17 \( 1 + T \)
37 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + 5 T + p T^{2} \) 1.7.f
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 7 T + p T^{2} \) 1.83.ah
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 19 T + p T^{2} \) 1.97.at
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.86344896648284, −12.42001150937875, −12.18390025355014, −11.80012471655300, −11.37201890666023, −10.68067721901173, −10.31985740903689, −10.00755380313357, −9.552360484706386, −8.902558086031334, −8.633568616122535, −7.984838069397797, −7.254291828693002, −6.943371906951805, −6.359892553604622, −6.245810248135103, −5.670366588212328, −5.065121442565194, −4.326205285739520, −3.840345363816796, −3.297534292533490, −2.640770889496505, −2.157523515226229, −0.9998010612063276, −0.6233374832120870, 0, 0.6233374832120870, 0.9998010612063276, 2.157523515226229, 2.640770889496505, 3.297534292533490, 3.840345363816796, 4.326205285739520, 5.065121442565194, 5.670366588212328, 6.245810248135103, 6.359892553604622, 6.943371906951805, 7.254291828693002, 7.984838069397797, 8.633568616122535, 8.902558086031334, 9.552360484706386, 10.00755380313357, 10.31985740903689, 10.68067721901173, 11.37201890666023, 11.80012471655300, 12.18390025355014, 12.42001150937875, 12.86344896648284

Graph of the $Z$-function along the critical line