Properties

Label 2-221760-1.1-c1-0-135
Degree $2$
Conductor $221760$
Sign $-1$
Analytic cond. $1770.76$
Root an. cond. $42.0804$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s − 11-s − 3·17-s − 3·19-s − 23-s + 25-s − 7·29-s − 6·31-s + 35-s + 8·37-s + 2·41-s − 5·43-s − 6·47-s + 49-s − 3·53-s + 55-s + 5·59-s + 7·61-s + 6·67-s − 10·71-s + 12·73-s + 77-s + 16·79-s + 3·83-s + 3·85-s − 3·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s − 0.301·11-s − 0.727·17-s − 0.688·19-s − 0.208·23-s + 1/5·25-s − 1.29·29-s − 1.07·31-s + 0.169·35-s + 1.31·37-s + 0.312·41-s − 0.762·43-s − 0.875·47-s + 1/7·49-s − 0.412·53-s + 0.134·55-s + 0.650·59-s + 0.896·61-s + 0.733·67-s − 1.18·71-s + 1.40·73-s + 0.113·77-s + 1.80·79-s + 0.329·83-s + 0.325·85-s − 0.317·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 221760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(221760\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(1770.76\)
Root analytic conductor: \(42.0804\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 221760,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 + T \)
good13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.08544322914434, −12.83939327005009, −12.36988131111215, −11.72636205746497, −11.22448724350561, −11.02681958133067, −10.47455241170536, −9.863252730810869, −9.422066461118321, −9.067685020251649, −8.352256282587901, −8.099661195227407, −7.474151467981262, −7.047977897013444, −6.475277109619764, −6.101431806836434, −5.420950048770254, −4.970923175523336, −4.360870454810438, −3.763299716112026, −3.511815619977413, −2.628448243744140, −2.202296842142029, −1.562919977531778, −0.6042290674764350, 0, 0.6042290674764350, 1.562919977531778, 2.202296842142029, 2.628448243744140, 3.511815619977413, 3.763299716112026, 4.360870454810438, 4.970923175523336, 5.420950048770254, 6.101431806836434, 6.475277109619764, 7.047977897013444, 7.474151467981262, 8.099661195227407, 8.352256282587901, 9.067685020251649, 9.422066461118321, 9.863252730810869, 10.47455241170536, 11.02681958133067, 11.22448724350561, 11.72636205746497, 12.36988131111215, 12.83939327005009, 13.08544322914434

Graph of the $Z$-function along the critical line