Properties

Label 2-221760-1.1-c1-0-130
Degree $2$
Conductor $221760$
Sign $1$
Analytic cond. $1770.76$
Root an. cond. $42.0804$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 7-s + 11-s − 2·13-s + 3·17-s + 7·19-s + 3·23-s + 25-s − 3·29-s − 4·31-s − 35-s + 10·37-s + 7·43-s + 49-s + 9·53-s − 55-s + 3·59-s + 61-s + 2·65-s − 2·67-s + 12·71-s − 4·73-s + 77-s + 2·79-s − 3·83-s − 3·85-s − 9·89-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.377·7-s + 0.301·11-s − 0.554·13-s + 0.727·17-s + 1.60·19-s + 0.625·23-s + 1/5·25-s − 0.557·29-s − 0.718·31-s − 0.169·35-s + 1.64·37-s + 1.06·43-s + 1/7·49-s + 1.23·53-s − 0.134·55-s + 0.390·59-s + 0.128·61-s + 0.248·65-s − 0.244·67-s + 1.42·71-s − 0.468·73-s + 0.113·77-s + 0.225·79-s − 0.329·83-s − 0.325·85-s − 0.953·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 221760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(221760\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(1770.76\)
Root analytic conductor: \(42.0804\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 221760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.253530484\)
\(L(\frac12)\) \(\approx\) \(3.253530484\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 - T \)
good13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + 19 T + p T^{2} \) 1.97.t
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.81150250183318, −12.54835813595035, −11.95651077158838, −11.54102616643920, −11.23369463660793, −10.76315570792522, −10.01226539898315, −9.747643497828411, −9.213641548460280, −8.800213311185452, −8.144808702813028, −7.642922861459870, −7.327810141947743, −7.009771773565087, −6.118459607565998, −5.727521541107897, −5.117795414004427, −4.841273174239816, −3.919803202964879, −3.802355617649364, −2.924761064549586, −2.591261124330657, −1.733243971214552, −1.039200406334401, −0.5904471057704773, 0.5904471057704773, 1.039200406334401, 1.733243971214552, 2.591261124330657, 2.924761064549586, 3.802355617649364, 3.919803202964879, 4.841273174239816, 5.117795414004427, 5.727521541107897, 6.118459607565998, 7.009771773565087, 7.327810141947743, 7.642922861459870, 8.144808702813028, 8.800213311185452, 9.213641548460280, 9.747643497828411, 10.01226539898315, 10.76315570792522, 11.23369463660793, 11.54102616643920, 11.95651077158838, 12.54835813595035, 12.81150250183318

Graph of the $Z$-function along the critical line