Properties

Label 2-2178-1.1-c1-0-34
Degree $2$
Conductor $2178$
Sign $-1$
Analytic cond. $17.3914$
Root an. cond. $4.17030$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3·5-s − 2·7-s − 8-s − 3·10-s − 5·13-s + 2·14-s + 16-s + 3·17-s − 2·19-s + 3·20-s − 6·23-s + 4·25-s + 5·26-s − 2·28-s − 3·29-s + 2·31-s − 32-s − 3·34-s − 6·35-s − 7·37-s + 2·38-s − 3·40-s + 3·41-s − 8·43-s + 6·46-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.34·5-s − 0.755·7-s − 0.353·8-s − 0.948·10-s − 1.38·13-s + 0.534·14-s + 1/4·16-s + 0.727·17-s − 0.458·19-s + 0.670·20-s − 1.25·23-s + 4/5·25-s + 0.980·26-s − 0.377·28-s − 0.557·29-s + 0.359·31-s − 0.176·32-s − 0.514·34-s − 1.01·35-s − 1.15·37-s + 0.324·38-s − 0.474·40-s + 0.468·41-s − 1.21·43-s + 0.884·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2178 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2178 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2178\)    =    \(2 \cdot 3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(17.3914\)
Root analytic conductor: \(4.17030\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2178,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 11 T + p T^{2} \) 1.97.al
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.900098133636718958293788517920, −7.932254624876906788240570504173, −7.12971528935758372285009464422, −6.34068742561049769477086584673, −5.73995378988955117370178521927, −4.84624266923289247624863204778, −3.44890016858367005507255422381, −2.44680839597863177893297068489, −1.68556648322455773231137315655, 0, 1.68556648322455773231137315655, 2.44680839597863177893297068489, 3.44890016858367005507255422381, 4.84624266923289247624863204778, 5.73995378988955117370178521927, 6.34068742561049769477086584673, 7.12971528935758372285009464422, 7.932254624876906788240570504173, 8.900098133636718958293788517920

Graph of the $Z$-function along the critical line