Properties

Label 2-2160-1.1-c1-0-27
Degree $2$
Conductor $2160$
Sign $-1$
Analytic cond. $17.2476$
Root an. cond. $4.15303$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s + 3·11-s − 13-s − 3·17-s − 8·19-s − 3·23-s + 25-s − 9·29-s + 7·31-s − 2·35-s + 2·37-s − 12·41-s + 7·43-s + 3·47-s − 3·49-s + 12·53-s + 3·55-s − 12·59-s − 10·61-s − 65-s + 4·67-s + 2·73-s − 6·77-s + 79-s − 18·83-s − 3·85-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s + 0.904·11-s − 0.277·13-s − 0.727·17-s − 1.83·19-s − 0.625·23-s + 1/5·25-s − 1.67·29-s + 1.25·31-s − 0.338·35-s + 0.328·37-s − 1.87·41-s + 1.06·43-s + 0.437·47-s − 3/7·49-s + 1.64·53-s + 0.404·55-s − 1.56·59-s − 1.28·61-s − 0.124·65-s + 0.488·67-s + 0.234·73-s − 0.683·77-s + 0.112·79-s − 1.97·83-s − 0.325·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(17.2476\)
Root analytic conductor: \(4.15303\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 18 T + p T^{2} \) 1.83.s
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.874969032343562701447767661632, −7.987431088496615763760094826771, −6.86599692706255249071269754257, −6.42202423051288271685955538968, −5.70096124404004576026267487667, −4.48286975641059636887413384127, −3.84298744888411936217576546090, −2.64315915730396133980270708555, −1.71464041150170530329847422571, 0, 1.71464041150170530329847422571, 2.64315915730396133980270708555, 3.84298744888411936217576546090, 4.48286975641059636887413384127, 5.70096124404004576026267487667, 6.42202423051288271685955538968, 6.86599692706255249071269754257, 7.987431088496615763760094826771, 8.874969032343562701447767661632

Graph of the $Z$-function along the critical line