Properties

Label 2-2142-1.1-c1-0-37
Degree $2$
Conductor $2142$
Sign $-1$
Analytic cond. $17.1039$
Root an. cond. $4.13569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 7-s + 8-s − 10-s − 3·11-s − 5·13-s + 14-s + 16-s − 17-s − 6·19-s − 20-s − 3·22-s + 8·23-s − 4·25-s − 5·26-s + 28-s − 4·29-s − 6·31-s + 32-s − 34-s − 35-s − 5·37-s − 6·38-s − 40-s + 4·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s + 0.353·8-s − 0.316·10-s − 0.904·11-s − 1.38·13-s + 0.267·14-s + 1/4·16-s − 0.242·17-s − 1.37·19-s − 0.223·20-s − 0.639·22-s + 1.66·23-s − 4/5·25-s − 0.980·26-s + 0.188·28-s − 0.742·29-s − 1.07·31-s + 0.176·32-s − 0.171·34-s − 0.169·35-s − 0.821·37-s − 0.973·38-s − 0.158·40-s + 0.624·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2142\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(17.1039\)
Root analytic conductor: \(4.13569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2142,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 5 T + p T^{2} \) 1.13.f
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 - 9 T + p T^{2} \) 1.79.aj
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.638994685144250058755560119869, −7.57301228525302142745708435155, −7.34505531857276165262607879293, −6.26154065509721020055388332299, −5.25040301016024486816261342026, −4.76079717195031085903989016093, −3.84664484475956969536598354260, −2.77187493497640080174593109372, −1.93783074616492210425537816742, 0, 1.93783074616492210425537816742, 2.77187493497640080174593109372, 3.84664484475956969536598354260, 4.76079717195031085903989016093, 5.25040301016024486816261342026, 6.26154065509721020055388332299, 7.34505531857276165262607879293, 7.57301228525302142745708435155, 8.638994685144250058755560119869

Graph of the $Z$-function along the critical line