Properties

Label 2-2142-1.1-c1-0-17
Degree $2$
Conductor $2142$
Sign $1$
Analytic cond. $17.1039$
Root an. cond. $4.13569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3·5-s + 7-s − 8-s − 3·10-s + 3·11-s + 5·13-s − 14-s + 16-s − 17-s + 2·19-s + 3·20-s − 3·22-s + 4·25-s − 5·26-s + 28-s + 2·31-s − 32-s + 34-s + 3·35-s − 37-s − 2·38-s − 3·40-s + 5·43-s + 3·44-s − 6·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.34·5-s + 0.377·7-s − 0.353·8-s − 0.948·10-s + 0.904·11-s + 1.38·13-s − 0.267·14-s + 1/4·16-s − 0.242·17-s + 0.458·19-s + 0.670·20-s − 0.639·22-s + 4/5·25-s − 0.980·26-s + 0.188·28-s + 0.359·31-s − 0.176·32-s + 0.171·34-s + 0.507·35-s − 0.164·37-s − 0.324·38-s − 0.474·40-s + 0.762·43-s + 0.452·44-s − 0.875·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2142\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(17.1039\)
Root analytic conductor: \(4.13569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2142,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.015538787\)
\(L(\frac12)\) \(\approx\) \(2.015538787\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 5 T + p T^{2} \) 1.13.af
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 7 T + p T^{2} \) 1.79.h
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.052138670987373994541813813241, −8.583687013397882071985645325670, −7.62211801412416468643283924364, −6.59038139553706762277955973954, −6.13784106971061118098727945401, −5.34980418823681217755725401346, −4.15556988809290758674718549938, −3.02852706937252409484105898746, −1.84054601317722139227417509529, −1.17615148289952457683042205285, 1.17615148289952457683042205285, 1.84054601317722139227417509529, 3.02852706937252409484105898746, 4.15556988809290758674718549938, 5.34980418823681217755725401346, 6.13784106971061118098727945401, 6.59038139553706762277955973954, 7.62211801412416468643283924364, 8.583687013397882071985645325670, 9.052138670987373994541813813241

Graph of the $Z$-function along the critical line