Properties

Label 2-210210-1.1-c1-0-120
Degree $2$
Conductor $210210$
Sign $-1$
Analytic cond. $1678.53$
Root an. cond. $40.9699$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 8-s + 9-s − 10-s + 11-s + 12-s − 13-s + 15-s + 16-s + 2·17-s − 18-s + 6·19-s + 20-s − 22-s − 24-s + 25-s + 26-s + 27-s + 2·29-s − 30-s + 4·31-s − 32-s + 33-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s + 0.288·12-s − 0.277·13-s + 0.258·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s + 1.37·19-s + 0.223·20-s − 0.213·22-s − 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.192·27-s + 0.371·29-s − 0.182·30-s + 0.718·31-s − 0.176·32-s + 0.174·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 210210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 210210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(210210\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(1678.53\)
Root analytic conductor: \(40.9699\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 210210,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 - T \)
13 \( 1 + T \)
good17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.53518434405618, −12.50816879127737, −12.39443095718371, −11.85109176065943, −11.38664342474321, −10.73323563048971, −10.28653826576902, −9.926618840936150, −9.437379070838252, −9.076510959048102, −8.604528394205236, −8.049186331190570, −7.603031645163347, −7.163784572133141, −6.662240672636823, −6.151950361293999, −5.440142296688864, −5.156206378025364, −4.356816727975557, −3.777494589554239, −3.039428883636015, −2.826935544238411, −2.050480386030643, −1.389866095646250, −1.009812826470003, 0, 1.009812826470003, 1.389866095646250, 2.050480386030643, 2.826935544238411, 3.039428883636015, 3.777494589554239, 4.356816727975557, 5.156206378025364, 5.440142296688864, 6.151950361293999, 6.662240672636823, 7.163784572133141, 7.603031645163347, 8.049186331190570, 8.604528394205236, 9.076510959048102, 9.437379070838252, 9.926618840936150, 10.28653826576902, 10.73323563048971, 11.38664342474321, 11.85109176065943, 12.39443095718371, 12.50816879127737, 13.53518434405618

Graph of the $Z$-function along the critical line