Properties

Label 2-200376-1.1-c1-0-40
Degree $2$
Conductor $200376$
Sign $-1$
Analytic cond. $1600.01$
Root an. cond. $40.0001$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 2·13-s + 6·17-s + 6·19-s − 23-s − 5·25-s − 6·29-s − 8·37-s + 6·41-s + 2·43-s + 8·47-s + 9·49-s + 8·53-s − 4·59-s + 4·61-s + 2·67-s + 8·71-s − 6·73-s − 12·79-s + 10·83-s − 10·89-s − 8·91-s − 18·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 1.51·7-s + 0.554·13-s + 1.45·17-s + 1.37·19-s − 0.208·23-s − 25-s − 1.11·29-s − 1.31·37-s + 0.937·41-s + 0.304·43-s + 1.16·47-s + 9/7·49-s + 1.09·53-s − 0.520·59-s + 0.512·61-s + 0.244·67-s + 0.949·71-s − 0.702·73-s − 1.35·79-s + 1.09·83-s − 1.05·89-s − 0.838·91-s − 1.82·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200376\)    =    \(2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1600.01\)
Root analytic conductor: \(40.0001\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 200376,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.29790102269711, −12.79420645978158, −12.32982372629282, −12.04679945127251, −11.44950282843301, −10.99558138699641, −10.26134910444189, −9.978419926481790, −9.638512461700468, −9.077457979676194, −8.735032118221763, −7.900002013564666, −7.522312493059455, −7.148054562057576, −6.543438285761228, −5.891173061750510, −5.624383964967388, −5.276450635566099, −4.245596515656773, −3.706299338499024, −3.454508880597284, −2.882180993258862, −2.229009877847918, −1.380530415214980, −0.7943106390064651, 0, 0.7943106390064651, 1.380530415214980, 2.229009877847918, 2.882180993258862, 3.454508880597284, 3.706299338499024, 4.245596515656773, 5.276450635566099, 5.624383964967388, 5.891173061750510, 6.543438285761228, 7.148054562057576, 7.522312493059455, 7.900002013564666, 8.735032118221763, 9.077457979676194, 9.638512461700468, 9.978419926481790, 10.26134910444189, 10.99558138699641, 11.44950282843301, 12.04679945127251, 12.32982372629282, 12.79420645978158, 13.29790102269711

Graph of the $Z$-function along the critical line