Properties

Label 2-200376-1.1-c1-0-19
Degree $2$
Conductor $200376$
Sign $1$
Analytic cond. $1600.01$
Root an. cond. $40.0001$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 7-s + 3·13-s + 6·17-s − 4·19-s + 23-s − 25-s + 3·31-s − 2·35-s − 3·37-s + 11·41-s + 2·43-s + 6·47-s − 6·49-s + 6·53-s − 7·59-s − 10·61-s + 6·65-s − 3·67-s + 8·71-s − 2·73-s + 4·79-s + 15·83-s + 12·85-s − 6·89-s − 3·91-s − 8·95-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.377·7-s + 0.832·13-s + 1.45·17-s − 0.917·19-s + 0.208·23-s − 1/5·25-s + 0.538·31-s − 0.338·35-s − 0.493·37-s + 1.71·41-s + 0.304·43-s + 0.875·47-s − 6/7·49-s + 0.824·53-s − 0.911·59-s − 1.28·61-s + 0.744·65-s − 0.366·67-s + 0.949·71-s − 0.234·73-s + 0.450·79-s + 1.64·83-s + 1.30·85-s − 0.635·89-s − 0.314·91-s − 0.820·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200376\)    =    \(2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1600.01\)
Root analytic conductor: \(40.0001\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 200376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.444183885\)
\(L(\frac12)\) \(\approx\) \(3.444183885\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 11 T + p T^{2} \) 1.41.al
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.11330624362387, −12.61459984818849, −12.16879023318302, −11.80996171762984, −10.94499639741320, −10.72801391946115, −10.28630973765073, −9.712760632118619, −9.302148072086691, −8.980282322571368, −8.246101883393991, −7.878637270429704, −7.344271997266259, −6.664521451451111, −6.145405960864657, −5.932115589150609, −5.387432487047839, −4.787451983617110, −4.077765294001066, −3.663758459944785, −2.966004395949317, −2.500233238644202, −1.773128125111823, −1.224070499426409, −0.5457358734490538, 0.5457358734490538, 1.224070499426409, 1.773128125111823, 2.500233238644202, 2.966004395949317, 3.663758459944785, 4.077765294001066, 4.787451983617110, 5.387432487047839, 5.932115589150609, 6.145405960864657, 6.664521451451111, 7.344271997266259, 7.878637270429704, 8.246101883393991, 8.980282322571368, 9.302148072086691, 9.712760632118619, 10.28630973765073, 10.72801391946115, 10.94499639741320, 11.80996171762984, 12.16879023318302, 12.61459984818849, 13.11330624362387

Graph of the $Z$-function along the critical line