Properties

Label 2-200376-1.1-c1-0-17
Degree $2$
Conductor $200376$
Sign $1$
Analytic cond. $1600.01$
Root an. cond. $40.0001$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 3·7-s + 6·17-s + 4·19-s + 23-s + 4·25-s − 2·29-s − 3·31-s − 9·35-s − 8·37-s + 5·41-s − 5·43-s + 2·49-s − 53-s + 10·59-s + 14·61-s + 6·67-s + 10·71-s − 4·73-s + 5·79-s − 8·83-s + 18·85-s − 3·89-s + 12·95-s − 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 1.34·5-s − 1.13·7-s + 1.45·17-s + 0.917·19-s + 0.208·23-s + 4/5·25-s − 0.371·29-s − 0.538·31-s − 1.52·35-s − 1.31·37-s + 0.780·41-s − 0.762·43-s + 2/7·49-s − 0.137·53-s + 1.30·59-s + 1.79·61-s + 0.733·67-s + 1.18·71-s − 0.468·73-s + 0.562·79-s − 0.878·83-s + 1.95·85-s − 0.317·89-s + 1.23·95-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200376\)    =    \(2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1600.01\)
Root analytic conductor: \(40.0001\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 200376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.277483444\)
\(L(\frac12)\) \(\approx\) \(3.277483444\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 3 T + p T^{2} \) 1.7.d
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.96408113961763, −12.75957408039007, −12.27866665160132, −11.65132563980690, −11.22657267111670, −10.51801488702314, −9.976515504790256, −9.872329949028514, −9.489652082241191, −8.908335280780193, −8.437713446890308, −7.720823109791255, −7.230465372834414, −6.725904640841982, −6.312076230820142, −5.683843485223392, −5.348514890160246, −5.078244830120756, −3.973701790158756, −3.529500176950543, −3.080522848862168, −2.452369837860178, −1.847896640047937, −1.192420481779398, −0.5317627419234379, 0.5317627419234379, 1.192420481779398, 1.847896640047937, 2.452369837860178, 3.080522848862168, 3.529500176950543, 3.973701790158756, 5.078244830120756, 5.348514890160246, 5.683843485223392, 6.312076230820142, 6.725904640841982, 7.230465372834414, 7.720823109791255, 8.437713446890308, 8.908335280780193, 9.489652082241191, 9.872329949028514, 9.976515504790256, 10.51801488702314, 11.22657267111670, 11.65132563980690, 12.27866665160132, 12.75957408039007, 12.96408113961763

Graph of the $Z$-function along the critical line