Properties

Label 2-198198-1.1-c1-0-113
Degree $2$
Conductor $198198$
Sign $-1$
Analytic cond. $1582.61$
Root an. cond. $39.7821$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s + 7-s + 8-s + 2·10-s − 13-s + 14-s + 16-s − 5·17-s + 4·19-s + 2·20-s + 7·23-s − 25-s − 26-s + 28-s − 5·29-s − 10·31-s + 32-s − 5·34-s + 2·35-s − 4·37-s + 4·38-s + 2·40-s − 8·41-s − 43-s + 7·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.377·7-s + 0.353·8-s + 0.632·10-s − 0.277·13-s + 0.267·14-s + 1/4·16-s − 1.21·17-s + 0.917·19-s + 0.447·20-s + 1.45·23-s − 1/5·25-s − 0.196·26-s + 0.188·28-s − 0.928·29-s − 1.79·31-s + 0.176·32-s − 0.857·34-s + 0.338·35-s − 0.657·37-s + 0.648·38-s + 0.316·40-s − 1.24·41-s − 0.152·43-s + 1.03·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 198198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198198 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(198198\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1582.61\)
Root analytic conductor: \(39.7821\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 198198,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.34655444698130, −12.95311271852645, −12.56556299903079, −11.77862516607449, −11.55416137289518, −10.99603737266655, −10.58948186142175, −10.13805298326927, −9.351076354553198, −9.221983805202588, −8.676443073371563, −7.983566075340725, −7.354855266039658, −6.979666918645879, −6.641570799774915, −5.789970590610700, −5.519621322990323, −5.066209914275188, −4.619091473922376, −3.835812937407295, −3.433570064097722, −2.747666087731939, −2.044415283632893, −1.820021443407424, −1.006220037432616, 0, 1.006220037432616, 1.820021443407424, 2.044415283632893, 2.747666087731939, 3.433570064097722, 3.835812937407295, 4.619091473922376, 5.066209914275188, 5.519621322990323, 5.789970590610700, 6.641570799774915, 6.979666918645879, 7.354855266039658, 7.983566075340725, 8.676443073371563, 9.221983805202588, 9.351076354553198, 10.13805298326927, 10.58948186142175, 10.99603737266655, 11.55416137289518, 11.77862516607449, 12.56556299903079, 12.95311271852645, 13.34655444698130

Graph of the $Z$-function along the critical line