Properties

Label 2-198198-1.1-c1-0-112
Degree $2$
Conductor $198198$
Sign $-1$
Analytic cond. $1582.61$
Root an. cond. $39.7821$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s − 7-s + 8-s + 2·10-s + 13-s − 14-s + 16-s − 2·17-s + 4·19-s + 2·20-s + 4·23-s − 25-s + 26-s − 28-s − 6·29-s + 32-s − 2·34-s − 2·35-s − 10·37-s + 4·38-s + 2·40-s − 2·41-s + 4·43-s + 4·46-s + 49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s − 0.377·7-s + 0.353·8-s + 0.632·10-s + 0.277·13-s − 0.267·14-s + 1/4·16-s − 0.485·17-s + 0.917·19-s + 0.447·20-s + 0.834·23-s − 1/5·25-s + 0.196·26-s − 0.188·28-s − 1.11·29-s + 0.176·32-s − 0.342·34-s − 0.338·35-s − 1.64·37-s + 0.648·38-s + 0.316·40-s − 0.312·41-s + 0.609·43-s + 0.589·46-s + 1/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 198198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198198 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(198198\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1582.61\)
Root analytic conductor: \(39.7821\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 198198,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.44352735828975, −12.94656872138352, −12.42608430628635, −12.01750701908848, −11.46902017724031, −11.00803218531451, −10.45986837645621, −10.17104951226104, −9.484399671903113, −9.022773578027792, −8.855796842646167, −7.825242272472447, −7.538240460727910, −6.911566524901962, −6.494068001922419, −5.933269470669488, −5.559429729564116, −5.075051362355731, −4.544127670778898, −3.845759189172308, −3.297803726711147, −2.923875606342291, −2.084738315328208, −1.736312974147092, −0.9880899397354454, 0, 0.9880899397354454, 1.736312974147092, 2.084738315328208, 2.923875606342291, 3.297803726711147, 3.845759189172308, 4.544127670778898, 5.075051362355731, 5.559429729564116, 5.933269470669488, 6.494068001922419, 6.911566524901962, 7.538240460727910, 7.825242272472447, 8.855796842646167, 9.022773578027792, 9.484399671903113, 10.17104951226104, 10.45986837645621, 11.00803218531451, 11.46902017724031, 12.01750701908848, 12.42608430628635, 12.94656872138352, 13.44352735828975

Graph of the $Z$-function along the critical line