Properties

Label 2-194040-1.1-c1-0-131
Degree $2$
Conductor $194040$
Sign $1$
Analytic cond. $1549.41$
Root an. cond. $39.3626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 11-s − 4·13-s − 7·17-s + 19-s − 3·23-s + 25-s + 5·29-s + 2·31-s − 8·37-s − 6·41-s − 11·43-s − 10·47-s + 53-s − 55-s − 59-s − 61-s − 4·65-s − 6·67-s + 10·71-s − 16·73-s − 4·79-s + 9·83-s − 7·85-s − 15·89-s + 95-s + 5·97-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.301·11-s − 1.10·13-s − 1.69·17-s + 0.229·19-s − 0.625·23-s + 1/5·25-s + 0.928·29-s + 0.359·31-s − 1.31·37-s − 0.937·41-s − 1.67·43-s − 1.45·47-s + 0.137·53-s − 0.134·55-s − 0.130·59-s − 0.128·61-s − 0.496·65-s − 0.733·67-s + 1.18·71-s − 1.87·73-s − 0.450·79-s + 0.987·83-s − 0.759·85-s − 1.58·89-s + 0.102·95-s + 0.507·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 194040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 194040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(194040\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(1549.41\)
Root analytic conductor: \(39.3626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 194040,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 + T \)
good13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.46949625955135, −13.29411123103474, −12.58608029221581, −12.11400024324347, −11.77810563147012, −11.24268896309593, −10.64268857294224, −10.22536987858761, −9.842146816998907, −9.409222293636725, −8.732882784957167, −8.387915684890364, −7.954614282198630, −7.158070465865249, −6.774234765085983, −6.510438700351635, −5.747208700393573, −5.210808072067787, −4.695659517333464, −4.441617445395214, −3.532966905515418, −3.003141877640245, −2.401092122853985, −1.899838955705042, −1.323196145863170, 0, 0, 1.323196145863170, 1.899838955705042, 2.401092122853985, 3.003141877640245, 3.532966905515418, 4.441617445395214, 4.695659517333464, 5.210808072067787, 5.747208700393573, 6.510438700351635, 6.774234765085983, 7.158070465865249, 7.954614282198630, 8.387915684890364, 8.732882784957167, 9.409222293636725, 9.842146816998907, 10.22536987858761, 10.64268857294224, 11.24268896309593, 11.77810563147012, 12.11400024324347, 12.58608029221581, 13.29411123103474, 13.46949625955135

Graph of the $Z$-function along the critical line