Properties

Label 2-193550-1.1-c1-0-31
Degree $2$
Conductor $193550$
Sign $-1$
Analytic cond. $1545.50$
Root an. cond. $39.3129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 8-s − 2·9-s − 5·11-s + 12-s + 3·13-s + 16-s − 3·17-s + 2·18-s − 6·19-s + 5·22-s + 4·23-s − 24-s − 3·26-s − 5·27-s − 6·29-s − 7·31-s − 32-s − 5·33-s + 3·34-s − 2·36-s − 3·37-s + 6·38-s + 3·39-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s − 2/3·9-s − 1.50·11-s + 0.288·12-s + 0.832·13-s + 1/4·16-s − 0.727·17-s + 0.471·18-s − 1.37·19-s + 1.06·22-s + 0.834·23-s − 0.204·24-s − 0.588·26-s − 0.962·27-s − 1.11·29-s − 1.25·31-s − 0.176·32-s − 0.870·33-s + 0.514·34-s − 1/3·36-s − 0.493·37-s + 0.973·38-s + 0.480·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(193550\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(1545.50\)
Root analytic conductor: \(39.3129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 193550,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.31011835162462, −12.88293347253813, −12.58583089923517, −11.74206188228670, −11.16951355874881, −11.01518896919868, −10.49989045234846, −10.13401300078954, −9.292269133161789, −9.009744253394580, −8.632210733781410, −8.154723606120301, −7.776786578451167, −7.207757013919099, −6.694483374340663, −6.096258757526524, −5.587077005401190, −5.136492534085704, −4.442935677426163, −3.669189388760274, −3.282836654182971, −2.647420573036764, −2.046065944038832, −1.772833173494605, −0.5792667889867707, 0, 0.5792667889867707, 1.772833173494605, 2.046065944038832, 2.647420573036764, 3.282836654182971, 3.669189388760274, 4.442935677426163, 5.136492534085704, 5.587077005401190, 6.096258757526524, 6.694483374340663, 7.207757013919099, 7.776786578451167, 8.154723606120301, 8.632210733781410, 9.009744253394580, 9.292269133161789, 10.13401300078954, 10.49989045234846, 11.01518896919868, 11.16951355874881, 11.74206188228670, 12.58583089923517, 12.88293347253813, 13.31011835162462

Graph of the $Z$-function along the critical line