L(s) = 1 | − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s + 6·11-s − 12-s + 13-s − 15-s + 16-s + 2·17-s − 18-s + 2·19-s + 20-s − 6·22-s − 4·23-s + 24-s + 25-s − 26-s − 27-s + 8·29-s + 30-s − 4·31-s − 32-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.80·11-s − 0.288·12-s + 0.277·13-s − 0.258·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.458·19-s + 0.223·20-s − 1.27·22-s − 0.834·23-s + 0.204·24-s + 1/5·25-s − 0.196·26-s − 0.192·27-s + 1.48·29-s + 0.182·30-s − 0.718·31-s − 0.176·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.881148773\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.881148773\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 + T \) | |
| 3 | \( 1 + T \) | |
| 5 | \( 1 - T \) | |
| 7 | \( 1 \) | |
| 13 | \( 1 - T \) | |
good | 11 | \( 1 - 6 T + p T^{2} \) | 1.11.ag |
| 17 | \( 1 - 2 T + p T^{2} \) | 1.17.ac |
| 19 | \( 1 - 2 T + p T^{2} \) | 1.19.ac |
| 23 | \( 1 + 4 T + p T^{2} \) | 1.23.e |
| 29 | \( 1 - 8 T + p T^{2} \) | 1.29.ai |
| 31 | \( 1 + 4 T + p T^{2} \) | 1.31.e |
| 37 | \( 1 - 2 T + p T^{2} \) | 1.37.ac |
| 41 | \( 1 + 6 T + p T^{2} \) | 1.41.g |
| 43 | \( 1 - 12 T + p T^{2} \) | 1.43.am |
| 47 | \( 1 - 12 T + p T^{2} \) | 1.47.am |
| 53 | \( 1 + 14 T + p T^{2} \) | 1.53.o |
| 59 | \( 1 + p T^{2} \) | 1.59.a |
| 61 | \( 1 - 4 T + p T^{2} \) | 1.61.ae |
| 67 | \( 1 - 14 T + p T^{2} \) | 1.67.ao |
| 71 | \( 1 - 8 T + p T^{2} \) | 1.71.ai |
| 73 | \( 1 + 6 T + p T^{2} \) | 1.73.g |
| 79 | \( 1 + 8 T + p T^{2} \) | 1.79.i |
| 83 | \( 1 + 2 T + p T^{2} \) | 1.83.c |
| 89 | \( 1 - 2 T + p T^{2} \) | 1.89.ac |
| 97 | \( 1 + 18 T + p T^{2} \) | 1.97.s |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.97321759138873, −15.35704284112427, −14.50932593658594, −14.12651750322166, −13.76355007974301, −12.68518862907827, −12.29663388897960, −11.85818448274378, −11.18533705988019, −10.80246609120002, −9.962808642748619, −9.652181142070999, −9.076681270767702, −8.478947005431928, −7.798824219130329, −7.001991288348310, −6.618449507392699, −5.949240772672706, −5.540465948655569, −4.501822240221291, −3.917355046550661, −3.113482545952401, −2.108398342189376, −1.323250155298730, −0.7506963608692091,
0.7506963608692091, 1.323250155298730, 2.108398342189376, 3.113482545952401, 3.917355046550661, 4.501822240221291, 5.540465948655569, 5.949240772672706, 6.618449507392699, 7.001991288348310, 7.798824219130329, 8.478947005431928, 9.076681270767702, 9.652181142070999, 9.962808642748619, 10.80246609120002, 11.18533705988019, 11.85818448274378, 12.29663388897960, 12.68518862907827, 13.76355007974301, 14.12651750322166, 14.50932593658594, 15.35704284112427, 15.97321759138873