Properties

Label 2-19110-1.1-c1-0-25
Degree $2$
Conductor $19110$
Sign $1$
Analytic cond. $152.594$
Root an. cond. $12.3528$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s + 6·11-s − 12-s + 13-s − 15-s + 16-s + 2·17-s − 18-s + 2·19-s + 20-s − 6·22-s − 4·23-s + 24-s + 25-s − 26-s − 27-s + 8·29-s + 30-s − 4·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.80·11-s − 0.288·12-s + 0.277·13-s − 0.258·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.458·19-s + 0.223·20-s − 1.27·22-s − 0.834·23-s + 0.204·24-s + 1/5·25-s − 0.196·26-s − 0.192·27-s + 1.48·29-s + 0.182·30-s − 0.718·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(152.594\)
Root analytic conductor: \(12.3528\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19110,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.881148773\)
\(L(\frac12)\) \(\approx\) \(1.881148773\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.97321759138873, −15.35704284112427, −14.50932593658594, −14.12651750322166, −13.76355007974301, −12.68518862907827, −12.29663388897960, −11.85818448274378, −11.18533705988019, −10.80246609120002, −9.962808642748619, −9.652181142070999, −9.076681270767702, −8.478947005431928, −7.798824219130329, −7.001991288348310, −6.618449507392699, −5.949240772672706, −5.540465948655569, −4.501822240221291, −3.917355046550661, −3.113482545952401, −2.108398342189376, −1.323250155298730, −0.7506963608692091, 0.7506963608692091, 1.323250155298730, 2.108398342189376, 3.113482545952401, 3.917355046550661, 4.501822240221291, 5.540465948655569, 5.949240772672706, 6.618449507392699, 7.001991288348310, 7.798824219130329, 8.478947005431928, 9.076681270767702, 9.652181142070999, 9.962808642748619, 10.80246609120002, 11.18533705988019, 11.85818448274378, 12.29663388897960, 12.68518862907827, 13.76355007974301, 14.12651750322166, 14.50932593658594, 15.35704284112427, 15.97321759138873

Graph of the $Z$-function along the critical line