Properties

Label 2-19110-1.1-c1-0-21
Degree $2$
Conductor $19110$
Sign $1$
Analytic cond. $152.594$
Root an. cond. $12.3528$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 8-s + 9-s + 10-s + 4·11-s + 12-s + 13-s − 15-s + 16-s − 4·17-s − 18-s + 2·19-s − 20-s − 4·22-s + 2·23-s − 24-s + 25-s − 26-s + 27-s + 8·29-s + 30-s − 4·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.20·11-s + 0.288·12-s + 0.277·13-s − 0.258·15-s + 1/4·16-s − 0.970·17-s − 0.235·18-s + 0.458·19-s − 0.223·20-s − 0.852·22-s + 0.417·23-s − 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.192·27-s + 1.48·29-s + 0.182·30-s − 0.718·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(152.594\)
Root analytic conductor: \(12.3528\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19110,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.068120051\)
\(L(\frac12)\) \(\approx\) \(2.068120051\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.81231920365067, −15.12571585392420, −14.79110073708045, −14.19771171523605, −13.52142888366103, −13.08087906446457, −12.23132752071471, −11.79292705217715, −11.32270603330411, −10.64686122180531, −10.08967236000143, −9.373874508351035, −8.942033628992958, −8.495296771601188, −7.923457508004366, −7.124459292744214, −6.770308751064532, −6.166251449017905, −5.208839384253509, −4.374139459633728, −3.815759393807434, −3.085868303280991, −2.329062268140858, −1.448802603981930, −0.6918606434337525, 0.6918606434337525, 1.448802603981930, 2.329062268140858, 3.085868303280991, 3.815759393807434, 4.374139459633728, 5.208839384253509, 6.166251449017905, 6.770308751064532, 7.124459292744214, 7.923457508004366, 8.495296771601188, 8.942033628992958, 9.373874508351035, 10.08967236000143, 10.64686122180531, 11.32270603330411, 11.79292705217715, 12.23132752071471, 13.08087906446457, 13.52142888366103, 14.19771171523605, 14.79110073708045, 15.12571585392420, 15.81231920365067

Graph of the $Z$-function along the critical line