Properties

Label 2-190400-1.1-c1-0-20
Degree $2$
Conductor $190400$
Sign $1$
Analytic cond. $1520.35$
Root an. cond. $38.9916$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 7-s + 9-s + 6·11-s − 2·13-s + 17-s + 2·21-s + 4·23-s + 4·27-s − 8·29-s − 12·33-s + 4·37-s + 4·39-s − 2·41-s − 8·43-s + 8·47-s + 49-s − 2·51-s − 6·53-s + 4·59-s + 8·61-s − 63-s − 16·67-s − 8·69-s + 4·71-s − 10·73-s − 6·77-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.377·7-s + 1/3·9-s + 1.80·11-s − 0.554·13-s + 0.242·17-s + 0.436·21-s + 0.834·23-s + 0.769·27-s − 1.48·29-s − 2.08·33-s + 0.657·37-s + 0.640·39-s − 0.312·41-s − 1.21·43-s + 1.16·47-s + 1/7·49-s − 0.280·51-s − 0.824·53-s + 0.520·59-s + 1.02·61-s − 0.125·63-s − 1.95·67-s − 0.963·69-s + 0.474·71-s − 1.17·73-s − 0.683·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(190400\)    =    \(2^{6} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(1520.35\)
Root analytic conductor: \(38.9916\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 190400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.211271832\)
\(L(\frac12)\) \(\approx\) \(1.211271832\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.06275026873111, −12.48942079902995, −12.00759307771164, −11.78051520753718, −11.26863171572441, −10.95501585967145, −10.31072455815531, −9.790942408363853, −9.432960447975881, −8.834215021880555, −8.568327479189279, −7.602415664874581, −7.212768033011145, −6.756419708239866, −6.296029075029120, −5.814368080218066, −5.445890648297863, −4.683267059436225, −4.403182240633639, −3.590344684394710, −3.268610394122801, −2.406582473006879, −1.639030663421483, −1.069298032407668, −0.3859708538763104, 0.3859708538763104, 1.069298032407668, 1.639030663421483, 2.406582473006879, 3.268610394122801, 3.590344684394710, 4.403182240633639, 4.683267059436225, 5.445890648297863, 5.814368080218066, 6.296029075029120, 6.756419708239866, 7.212768033011145, 7.602415664874581, 8.568327479189279, 8.834215021880555, 9.432960447975881, 9.790942408363853, 10.31072455815531, 10.95501585967145, 11.26863171572441, 11.78051520753718, 12.00759307771164, 12.48942079902995, 13.06275026873111

Graph of the $Z$-function along the critical line