Properties

Label 2-190400-1.1-c1-0-13
Degree $2$
Conductor $190400$
Sign $1$
Analytic cond. $1520.35$
Root an. cond. $38.9916$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 3·9-s − 2·13-s − 17-s + 4·19-s + 2·29-s − 8·31-s − 2·37-s − 2·41-s − 4·43-s − 4·47-s + 49-s + 2·53-s + 12·59-s + 10·61-s − 3·63-s − 4·67-s + 16·71-s − 2·73-s − 16·79-s + 9·81-s + 12·83-s + 2·89-s − 2·91-s − 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 0.377·7-s − 9-s − 0.554·13-s − 0.242·17-s + 0.917·19-s + 0.371·29-s − 1.43·31-s − 0.328·37-s − 0.312·41-s − 0.609·43-s − 0.583·47-s + 1/7·49-s + 0.274·53-s + 1.56·59-s + 1.28·61-s − 0.377·63-s − 0.488·67-s + 1.89·71-s − 0.234·73-s − 1.80·79-s + 81-s + 1.31·83-s + 0.211·89-s − 0.209·91-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(190400\)    =    \(2^{6} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(1520.35\)
Root analytic conductor: \(38.9916\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 190400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.353154597\)
\(L(\frac12)\) \(\approx\) \(1.353154597\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.28774379598957, −12.56491510188651, −12.05827771265283, −11.75130446192485, −11.16543473705776, −10.97803513597784, −10.20481786818171, −9.851855613087802, −9.249817964460827, −8.874968682455309, −8.230576214492928, −8.023972761590611, −7.286172134511400, −6.886282067833340, −6.398140211344272, −5.559990445703768, −5.336165123684918, −4.963433033351633, −4.111744475144346, −3.644482356791506, −3.029638503047547, −2.469766163757429, −1.914052186540987, −1.164170863036927, −0.3417998806033155, 0.3417998806033155, 1.164170863036927, 1.914052186540987, 2.469766163757429, 3.029638503047547, 3.644482356791506, 4.111744475144346, 4.963433033351633, 5.336165123684918, 5.559990445703768, 6.398140211344272, 6.886282067833340, 7.286172134511400, 8.023972761590611, 8.230576214492928, 8.874968682455309, 9.249817964460827, 9.851855613087802, 10.20481786818171, 10.97803513597784, 11.16543473705776, 11.75130446192485, 12.05827771265283, 12.56491510188651, 13.28774379598957

Graph of the $Z$-function along the critical line