Properties

Label 2-1848-1.1-c1-0-26
Degree $2$
Conductor $1848$
Sign $-1$
Analytic cond. $14.7563$
Root an. cond. $3.84140$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·5-s + 7-s + 9-s + 11-s − 3·13-s − 3·15-s + 4·17-s − 7·19-s + 21-s − 2·23-s + 4·25-s + 27-s − 3·29-s + 33-s − 3·35-s − 11·37-s − 3·39-s + 8·41-s − 2·43-s − 3·45-s − 9·47-s + 49-s + 4·51-s + 10·53-s − 3·55-s − 7·57-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.34·5-s + 0.377·7-s + 1/3·9-s + 0.301·11-s − 0.832·13-s − 0.774·15-s + 0.970·17-s − 1.60·19-s + 0.218·21-s − 0.417·23-s + 4/5·25-s + 0.192·27-s − 0.557·29-s + 0.174·33-s − 0.507·35-s − 1.80·37-s − 0.480·39-s + 1.24·41-s − 0.304·43-s − 0.447·45-s − 1.31·47-s + 1/7·49-s + 0.560·51-s + 1.37·53-s − 0.404·55-s − 0.927·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1848 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1848\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(14.7563\)
Root analytic conductor: \(3.84140\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1848,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 - T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.635530002479711911807663353444, −8.082864567579570827623668611244, −7.45651225258303462325362670852, −6.74130034170550166259021910916, −5.51633184042291595562202569794, −4.44511078048048553410871379288, −3.90719150030222637297333614085, −2.93531963849626206594334394511, −1.71748086423211192776019423595, 0, 1.71748086423211192776019423595, 2.93531963849626206594334394511, 3.90719150030222637297333614085, 4.44511078048048553410871379288, 5.51633184042291595562202569794, 6.74130034170550166259021910916, 7.45651225258303462325362670852, 8.082864567579570827623668611244, 8.635530002479711911807663353444

Graph of the $Z$-function along the critical line