Properties

Label 2-18240-1.1-c1-0-3
Degree $2$
Conductor $18240$
Sign $1$
Analytic cond. $145.647$
Root an. cond. $12.0684$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·7-s + 9-s − 6·13-s − 15-s + 8·17-s − 19-s − 2·21-s − 4·23-s + 25-s + 27-s − 2·29-s − 2·31-s + 2·35-s + 2·37-s − 6·39-s − 12·41-s − 4·43-s − 45-s + 12·47-s − 3·49-s + 8·51-s − 10·53-s − 57-s − 6·59-s + 14·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s − 1.66·13-s − 0.258·15-s + 1.94·17-s − 0.229·19-s − 0.436·21-s − 0.834·23-s + 1/5·25-s + 0.192·27-s − 0.371·29-s − 0.359·31-s + 0.338·35-s + 0.328·37-s − 0.960·39-s − 1.87·41-s − 0.609·43-s − 0.149·45-s + 1.75·47-s − 3/7·49-s + 1.12·51-s − 1.37·53-s − 0.132·57-s − 0.781·59-s + 1.79·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18240\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(145.647\)
Root analytic conductor: \(12.0684\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 18240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.443796329\)
\(L(\frac12)\) \(\approx\) \(1.443796329\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
19 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.76676936317416, −15.17181583463070, −14.60657572350145, −14.32244195880904, −13.67504555398813, −12.89999081447367, −12.49155210947518, −12.03644161681220, −11.55477316110137, −10.55013346911516, −9.975936845392362, −9.765976765634013, −9.108209500189870, −8.259052300920520, −7.827293992475887, −7.275587329253249, −6.748876513772151, −5.878651963229425, −5.228322417762556, −4.563609672043170, −3.652126177899483, −3.283352215403064, −2.506236760012082, −1.687558832109534, −0.4739773272584180, 0.4739773272584180, 1.687558832109534, 2.506236760012082, 3.283352215403064, 3.652126177899483, 4.563609672043170, 5.228322417762556, 5.878651963229425, 6.748876513772151, 7.275587329253249, 7.827293992475887, 8.259052300920520, 9.108209500189870, 9.765976765634013, 9.975936845392362, 10.55013346911516, 11.55477316110137, 12.03644161681220, 12.49155210947518, 12.89999081447367, 13.67504555398813, 14.32244195880904, 14.60657572350145, 15.17181583463070, 15.76676936317416

Graph of the $Z$-function along the critical line