Properties

Label 2-1824-1.1-c1-0-24
Degree $2$
Conductor $1824$
Sign $1$
Analytic cond. $14.5647$
Root an. cond. $3.81637$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·5-s + 3·7-s + 9-s + 3·11-s + 3·15-s + 17-s + 19-s + 3·21-s + 4·25-s + 27-s − 8·29-s − 2·31-s + 3·33-s + 9·35-s − 4·37-s − 12·41-s − 43-s + 3·45-s + 9·47-s + 2·49-s + 51-s + 6·53-s + 9·55-s + 57-s − 6·59-s − 61-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.34·5-s + 1.13·7-s + 1/3·9-s + 0.904·11-s + 0.774·15-s + 0.242·17-s + 0.229·19-s + 0.654·21-s + 4/5·25-s + 0.192·27-s − 1.48·29-s − 0.359·31-s + 0.522·33-s + 1.52·35-s − 0.657·37-s − 1.87·41-s − 0.152·43-s + 0.447·45-s + 1.31·47-s + 2/7·49-s + 0.140·51-s + 0.824·53-s + 1.21·55-s + 0.132·57-s − 0.781·59-s − 0.128·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1824 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1824\)    =    \(2^{5} \cdot 3 \cdot 19\)
Sign: $1$
Analytic conductor: \(14.5647\)
Root analytic conductor: \(3.81637\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1824,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.279797776\)
\(L(\frac12)\) \(\approx\) \(3.279797776\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
19 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - T + p T^{2} \) 1.17.ab
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.101238015196153235891929103797, −8.739742529675211537680832000732, −7.68480034566561980728370681208, −6.97490045236361700205558801297, −5.93913106016740764907159143329, −5.29110799616034856454488976968, −4.31976547466127888889844461893, −3.26094354372819570090498374626, −1.97176209830415245680106247251, −1.49634774917676401147922867412, 1.49634774917676401147922867412, 1.97176209830415245680106247251, 3.26094354372819570090498374626, 4.31976547466127888889844461893, 5.29110799616034856454488976968, 5.93913106016740764907159143329, 6.97490045236361700205558801297, 7.68480034566561980728370681208, 8.739742529675211537680832000732, 9.101238015196153235891929103797

Graph of the $Z$-function along the critical line