Properties

Label 2-182070-1.1-c1-0-26
Degree $2$
Conductor $182070$
Sign $1$
Analytic cond. $1453.83$
Root an. cond. $38.1292$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 7-s + 8-s − 10-s − 4·11-s + 4·13-s + 14-s + 16-s + 6·19-s − 20-s − 4·22-s − 2·23-s + 25-s + 4·26-s + 28-s − 8·29-s − 4·31-s + 32-s − 35-s + 4·37-s + 6·38-s − 40-s − 2·41-s − 4·43-s − 4·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s + 0.353·8-s − 0.316·10-s − 1.20·11-s + 1.10·13-s + 0.267·14-s + 1/4·16-s + 1.37·19-s − 0.223·20-s − 0.852·22-s − 0.417·23-s + 1/5·25-s + 0.784·26-s + 0.188·28-s − 1.48·29-s − 0.718·31-s + 0.176·32-s − 0.169·35-s + 0.657·37-s + 0.973·38-s − 0.158·40-s − 0.312·41-s − 0.609·43-s − 0.603·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182070 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182070 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182070\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1453.83\)
Root analytic conductor: \(38.1292\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 182070,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.279312440\)
\(L(\frac12)\) \(\approx\) \(3.279312440\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.21740975256249, −12.77846963578144, −12.27322366327320, −11.65613008401289, −11.28210907616911, −11.05182195348889, −10.42757114531822, −9.946177711129732, −9.401573195326636, −8.731420904281392, −8.281211219139292, −7.771333388031518, −7.339630753582614, −7.032759220774257, −6.025608581811371, −5.867545875618260, −5.220409593550760, −4.886510081903263, −4.141380423569804, −3.652205970147803, −3.232536845728272, −2.599233117490508, −1.894516046019873, −1.310867166347895, −0.4571256407261401, 0.4571256407261401, 1.310867166347895, 1.894516046019873, 2.599233117490508, 3.232536845728272, 3.652205970147803, 4.141380423569804, 4.886510081903263, 5.220409593550760, 5.867545875618260, 6.025608581811371, 7.032759220774257, 7.339630753582614, 7.771333388031518, 8.281211219139292, 8.731420904281392, 9.401573195326636, 9.946177711129732, 10.42757114531822, 11.05182195348889, 11.28210907616911, 11.65613008401289, 12.27322366327320, 12.77846963578144, 13.21740975256249

Graph of the $Z$-function along the critical line