Properties

Label 2-181056-1.1-c1-0-51
Degree $2$
Conductor $181056$
Sign $-1$
Analytic cond. $1445.73$
Root an. cond. $38.0228$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·5-s + 3·7-s + 9-s − 2·11-s − 4·13-s + 3·15-s − 6·17-s − 5·19-s + 3·21-s − 23-s + 4·25-s + 27-s − 2·29-s + 4·31-s − 2·33-s + 9·35-s + 8·37-s − 4·39-s − 41-s + 4·43-s + 3·45-s − 3·47-s + 2·49-s − 6·51-s + 2·53-s − 6·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.34·5-s + 1.13·7-s + 1/3·9-s − 0.603·11-s − 1.10·13-s + 0.774·15-s − 1.45·17-s − 1.14·19-s + 0.654·21-s − 0.208·23-s + 4/5·25-s + 0.192·27-s − 0.371·29-s + 0.718·31-s − 0.348·33-s + 1.52·35-s + 1.31·37-s − 0.640·39-s − 0.156·41-s + 0.609·43-s + 0.447·45-s − 0.437·47-s + 2/7·49-s − 0.840·51-s + 0.274·53-s − 0.809·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 181056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 181056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(181056\)    =    \(2^{6} \cdot 3 \cdot 23 \cdot 41\)
Sign: $-1$
Analytic conductor: \(1445.73\)
Root analytic conductor: \(38.0228\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 181056,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
23 \( 1 + T \)
41 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 5 T + p T^{2} \) 1.19.f
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.21952727642625, −13.15792388055696, −12.68907347729944, −11.97586368276174, −11.41821410382220, −11.01098540158233, −10.41580855347142, −10.13405360801138, −9.538586111583187, −9.177646856314394, −8.591468896473354, −8.201506302992710, −7.732422286963932, −7.112671958347638, −6.642879348357145, −6.048001148922669, −5.585307514348497, −4.928025896375466, −4.510894063228912, −4.216032032776639, −3.165695158183730, −2.446785290412125, −2.182747195192732, −1.879645549875124, −0.9801102455063488, 0, 0.9801102455063488, 1.879645549875124, 2.182747195192732, 2.446785290412125, 3.165695158183730, 4.216032032776639, 4.510894063228912, 4.928025896375466, 5.585307514348497, 6.048001148922669, 6.642879348357145, 7.112671958347638, 7.732422286963932, 8.201506302992710, 8.591468896473354, 9.177646856314394, 9.538586111583187, 10.13405360801138, 10.41580855347142, 11.01098540158233, 11.41821410382220, 11.97586368276174, 12.68907347729944, 13.15792388055696, 13.21952727642625

Graph of the $Z$-function along the critical line