Properties

Label 2-178752-1.1-c1-0-138
Degree $2$
Conductor $178752$
Sign $-1$
Analytic cond. $1427.34$
Root an. cond. $37.7801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s + 9-s − 6·11-s − 2·13-s − 2·15-s − 19-s + 4·23-s − 25-s − 27-s + 6·29-s − 2·31-s + 6·33-s − 8·37-s + 2·39-s − 2·41-s − 12·43-s + 2·45-s − 2·47-s + 6·53-s − 12·55-s + 57-s − 4·59-s + 2·61-s − 4·65-s − 6·67-s − 4·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s + 1/3·9-s − 1.80·11-s − 0.554·13-s − 0.516·15-s − 0.229·19-s + 0.834·23-s − 1/5·25-s − 0.192·27-s + 1.11·29-s − 0.359·31-s + 1.04·33-s − 1.31·37-s + 0.320·39-s − 0.312·41-s − 1.82·43-s + 0.298·45-s − 0.291·47-s + 0.824·53-s − 1.61·55-s + 0.132·57-s − 0.520·59-s + 0.256·61-s − 0.496·65-s − 0.733·67-s − 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178752\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(1427.34\)
Root analytic conductor: \(37.7801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 178752,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
19 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.28218307949366, −13.07815278987379, −12.47049573474461, −12.04955454249871, −11.54059823107100, −10.92631091897700, −10.40824984539471, −10.24017099265805, −9.821766038195222, −9.184428189062893, −8.601936543143272, −8.162175334210661, −7.554441664381722, −7.097791319294856, −6.544019015392751, −6.106118435468163, −5.374309787140518, −5.124255588383381, −4.859568643833397, −4.018487951149429, −3.175753328883022, −2.799615852320842, −2.054545639409636, −1.684152227020327, −0.6785265877897367, 0, 0.6785265877897367, 1.684152227020327, 2.054545639409636, 2.799615852320842, 3.175753328883022, 4.018487951149429, 4.859568643833397, 5.124255588383381, 5.374309787140518, 6.106118435468163, 6.544019015392751, 7.097791319294856, 7.554441664381722, 8.162175334210661, 8.601936543143272, 9.184428189062893, 9.821766038195222, 10.24017099265805, 10.40824984539471, 10.92631091897700, 11.54059823107100, 12.04955454249871, 12.47049573474461, 13.07815278987379, 13.28218307949366

Graph of the $Z$-function along the critical line