Properties

Label 2-17856-1.1-c1-0-24
Degree $2$
Conductor $17856$
Sign $1$
Analytic cond. $142.580$
Root an. cond. $11.9407$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s + 5·7-s − 2·11-s + 4·13-s + 4·17-s − 5·19-s + 4·23-s + 4·25-s + 10·29-s + 31-s − 15·35-s + 6·37-s + 5·41-s + 2·43-s − 4·47-s + 18·49-s − 12·53-s + 6·55-s − 5·59-s + 8·61-s − 12·65-s + 12·67-s + 9·71-s − 10·73-s − 10·77-s + 2·79-s − 10·83-s + ⋯
L(s)  = 1  − 1.34·5-s + 1.88·7-s − 0.603·11-s + 1.10·13-s + 0.970·17-s − 1.14·19-s + 0.834·23-s + 4/5·25-s + 1.85·29-s + 0.179·31-s − 2.53·35-s + 0.986·37-s + 0.780·41-s + 0.304·43-s − 0.583·47-s + 18/7·49-s − 1.64·53-s + 0.809·55-s − 0.650·59-s + 1.02·61-s − 1.48·65-s + 1.46·67-s + 1.06·71-s − 1.17·73-s − 1.13·77-s + 0.225·79-s − 1.09·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17856 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17856\)    =    \(2^{6} \cdot 3^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(142.580\)
Root analytic conductor: \(11.9407\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 17856,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.477641087\)
\(L(\frac12)\) \(\approx\) \(2.477641087\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
31 \( 1 - T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 15 T + p T^{2} \) 1.97.p
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.77395460795567, −15.28344146876865, −14.72246978070341, −14.30984513510127, −13.78844594469297, −12.87996796912169, −12.49800445460505, −11.76703507092597, −11.34238895614193, −10.90134827874637, −10.55882263209310, −9.628479309018994, −8.633571097224921, −8.273942444379003, −8.019281792176356, −7.449641063473772, −6.650642578546117, −5.873215379274898, −5.065387900020348, −4.547058813104708, −4.092691719014116, −3.243004896111122, −2.440302601860736, −1.379446564343012, −0.7460351217404768, 0.7460351217404768, 1.379446564343012, 2.440302601860736, 3.243004896111122, 4.092691719014116, 4.547058813104708, 5.065387900020348, 5.873215379274898, 6.650642578546117, 7.449641063473772, 8.019281792176356, 8.273942444379003, 8.633571097224921, 9.628479309018994, 10.55882263209310, 10.90134827874637, 11.34238895614193, 11.76703507092597, 12.49800445460505, 12.87996796912169, 13.78844594469297, 14.30984513510127, 14.72246978070341, 15.28344146876865, 15.77395460795567

Graph of the $Z$-function along the critical line