Properties

Label 2-1682-1.1-c1-0-33
Degree $2$
Conductor $1682$
Sign $1$
Analytic cond. $13.4308$
Root an. cond. $3.66481$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s + 4-s + 2·6-s − 7-s + 8-s + 9-s + 6·11-s + 2·12-s − 4·13-s − 14-s + 16-s + 3·17-s + 18-s + 4·19-s − 2·21-s + 6·22-s + 9·23-s + 2·24-s − 5·25-s − 4·26-s − 4·27-s − 28-s − 5·31-s + 32-s + 12·33-s + 3·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.816·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 1.80·11-s + 0.577·12-s − 1.10·13-s − 0.267·14-s + 1/4·16-s + 0.727·17-s + 0.235·18-s + 0.917·19-s − 0.436·21-s + 1.27·22-s + 1.87·23-s + 0.408·24-s − 25-s − 0.784·26-s − 0.769·27-s − 0.188·28-s − 0.898·31-s + 0.176·32-s + 2.08·33-s + 0.514·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1682 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1682 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1682\)    =    \(2 \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(13.4308\)
Root analytic conductor: \(3.66481\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1682,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.106204617\)
\(L(\frac12)\) \(\approx\) \(4.106204617\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
29 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.456458443533822732896897031223, −8.677117938950219848302186352545, −7.50723804849512570961136065812, −7.16366469160968703287751003216, −6.09283190358559230018773703443, −5.18599408584181814805220584333, −4.07172783854566247841696623218, −3.38601028447971707410746827239, −2.63516822507432546692486958838, −1.39345694576822601394248550654, 1.39345694576822601394248550654, 2.63516822507432546692486958838, 3.38601028447971707410746827239, 4.07172783854566247841696623218, 5.18599408584181814805220584333, 6.09283190358559230018773703443, 7.16366469160968703287751003216, 7.50723804849512570961136065812, 8.677117938950219848302186352545, 9.456458443533822732896897031223

Graph of the $Z$-function along the critical line