Properties

Label 2-167310-1.1-c1-0-117
Degree $2$
Conductor $167310$
Sign $-1$
Analytic cond. $1335.97$
Root an. cond. $36.5510$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s + 2·7-s − 8-s − 10-s + 11-s − 2·14-s + 16-s + 20-s − 22-s − 6·23-s + 25-s + 2·28-s − 6·29-s + 8·31-s − 32-s + 2·35-s − 2·37-s − 40-s + 10·41-s + 4·43-s + 44-s + 6·46-s + 8·47-s − 3·49-s − 50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.755·7-s − 0.353·8-s − 0.316·10-s + 0.301·11-s − 0.534·14-s + 1/4·16-s + 0.223·20-s − 0.213·22-s − 1.25·23-s + 1/5·25-s + 0.377·28-s − 1.11·29-s + 1.43·31-s − 0.176·32-s + 0.338·35-s − 0.328·37-s − 0.158·40-s + 1.56·41-s + 0.609·43-s + 0.150·44-s + 0.884·46-s + 1.16·47-s − 3/7·49-s − 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(167310\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1335.97\)
Root analytic conductor: \(36.5510\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 167310,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51481903401850, −12.99011352505925, −12.30500313497676, −12.08493113789706, −11.45779942766647, −11.05438384765050, −10.61323662154263, −10.10263639188782, −9.631386120124287, −9.161895283841300, −8.773452590352733, −8.108031049034235, −7.736565055255090, −7.416426124452790, −6.516476404067337, −6.313068156498190, −5.645939211608292, −5.219541819776175, −4.441295583240203, −4.038007907636185, −3.338654053735739, −2.461445053067873, −2.205870319298185, −1.429144054555850, −0.9378626661451819, 0, 0.9378626661451819, 1.429144054555850, 2.205870319298185, 2.461445053067873, 3.338654053735739, 4.038007907636185, 4.441295583240203, 5.219541819776175, 5.645939211608292, 6.313068156498190, 6.516476404067337, 7.416426124452790, 7.736565055255090, 8.108031049034235, 8.773452590352733, 9.161895283841300, 9.631386120124287, 10.10263639188782, 10.61323662154263, 11.05438384765050, 11.45779942766647, 12.08493113789706, 12.30500313497676, 12.99011352505925, 13.51481903401850

Graph of the $Z$-function along the critical line