Properties

Label 2-162288-1.1-c1-0-130
Degree $2$
Conductor $162288$
Sign $-1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 2·11-s − 5·13-s + 4·17-s − 6·19-s + 23-s + 4·25-s − 29-s + 4·31-s + 37-s − 41-s − 43-s − 9·47-s + 6·53-s + 6·55-s + 8·59-s − 12·61-s − 15·65-s + 16·67-s − 10·73-s − 6·79-s + 12·83-s + 12·85-s + 4·89-s − 18·95-s − 3·97-s + 101-s + ⋯
L(s)  = 1  + 1.34·5-s + 0.603·11-s − 1.38·13-s + 0.970·17-s − 1.37·19-s + 0.208·23-s + 4/5·25-s − 0.185·29-s + 0.718·31-s + 0.164·37-s − 0.156·41-s − 0.152·43-s − 1.31·47-s + 0.824·53-s + 0.809·55-s + 1.04·59-s − 1.53·61-s − 1.86·65-s + 1.95·67-s − 1.17·73-s − 0.675·79-s + 1.31·83-s + 1.30·85-s + 0.423·89-s − 1.84·95-s − 0.304·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 6 T + p T^{2} \) 1.19.g
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + T + p T^{2} \) 1.41.b
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.39628767626661, −13.14619985328668, −12.54688031311905, −12.13149542293981, −11.73560185362900, −11.06965172032066, −10.46721328656677, −10.09412535732214, −9.758756692492660, −9.266383979548802, −8.874412189900829, −8.101533738951403, −7.837525073938409, −6.956111030555464, −6.654170909003294, −6.234765477220872, −5.420550873564372, −5.355668044640532, −4.535075921093319, −4.113528247800099, −3.271876799360851, −2.694149995069236, −2.146436064720302, −1.666577303170094, −0.9408446274528168, 0, 0.9408446274528168, 1.666577303170094, 2.146436064720302, 2.694149995069236, 3.271876799360851, 4.113528247800099, 4.535075921093319, 5.355668044640532, 5.420550873564372, 6.234765477220872, 6.654170909003294, 6.956111030555464, 7.837525073938409, 8.101533738951403, 8.874412189900829, 9.266383979548802, 9.758756692492660, 10.09412535732214, 10.46721328656677, 11.06965172032066, 11.73560185362900, 12.13149542293981, 12.54688031311905, 13.14619985328668, 13.39628767626661

Graph of the $Z$-function along the critical line