Properties

Label 2-162288-1.1-c1-0-115
Degree $2$
Conductor $162288$
Sign $-1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 4·11-s + 4·13-s − 4·17-s − 2·19-s + 23-s − 25-s + 6·29-s + 6·31-s − 2·37-s − 10·41-s − 8·43-s − 10·47-s + 6·53-s − 8·55-s + 12·59-s + 10·61-s + 8·65-s − 8·67-s − 4·71-s + 2·73-s + 8·79-s + 6·83-s − 8·85-s − 4·95-s + 8·97-s + 101-s + ⋯
L(s)  = 1  + 0.894·5-s − 1.20·11-s + 1.10·13-s − 0.970·17-s − 0.458·19-s + 0.208·23-s − 1/5·25-s + 1.11·29-s + 1.07·31-s − 0.328·37-s − 1.56·41-s − 1.21·43-s − 1.45·47-s + 0.824·53-s − 1.07·55-s + 1.56·59-s + 1.28·61-s + 0.992·65-s − 0.977·67-s − 0.474·71-s + 0.234·73-s + 0.900·79-s + 0.658·83-s − 0.867·85-s − 0.410·95-s + 0.812·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.42138876624932, −13.19670892413319, −12.80539828626132, −11.99044471721502, −11.56129070085619, −11.17929028254389, −10.40482482888873, −10.14211815522131, −10.02570245261242, −8.991909360131212, −8.772648162366476, −8.200187080769118, −7.923579657061537, −6.983757590444081, −6.529591876134389, −6.312756287801118, −5.587499559711687, −5.046008304639250, −4.759604567118825, −3.928492744931925, −3.365627862364376, −2.709427994392148, −2.172031780748108, −1.667185640711948, −0.8536131433345161, 0, 0.8536131433345161, 1.667185640711948, 2.172031780748108, 2.709427994392148, 3.365627862364376, 3.928492744931925, 4.759604567118825, 5.046008304639250, 5.587499559711687, 6.312756287801118, 6.529591876134389, 6.983757590444081, 7.923579657061537, 8.200187080769118, 8.772648162366476, 8.991909360131212, 10.02570245261242, 10.14211815522131, 10.40482482888873, 11.17929028254389, 11.56129070085619, 11.99044471721502, 12.80539828626132, 13.19670892413319, 13.42138876624932

Graph of the $Z$-function along the critical line