Properties

Label 2-15730-1.1-c1-0-12
Degree $2$
Conductor $15730$
Sign $-1$
Analytic cond. $125.604$
Root an. cond. $11.2073$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s + 7-s − 8-s − 2·9-s + 10-s − 12-s + 13-s − 14-s + 15-s + 16-s + 2·18-s + 4·19-s − 20-s − 21-s − 4·23-s + 24-s + 25-s − 26-s + 5·27-s + 28-s − 2·29-s − 30-s + 8·31-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s − 2/3·9-s + 0.316·10-s − 0.288·12-s + 0.277·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s + 0.471·18-s + 0.917·19-s − 0.223·20-s − 0.218·21-s − 0.834·23-s + 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.962·27-s + 0.188·28-s − 0.371·29-s − 0.182·30-s + 1.43·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15730 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15730 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15730\)    =    \(2 \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(125.604\)
Root analytic conductor: \(11.2073\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 15730,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 - T + p T^{2} \) 1.7.ab
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 13 T + p T^{2} \) 1.89.n
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.40969326971862, −15.80216342066804, −15.31269743960033, −14.76524140195754, −13.95189986438204, −13.69808142637341, −12.71220331856734, −12.08213590865895, −11.61593874098150, −11.34284606157409, −10.67491580415552, −10.02013730466639, −9.551580272496767, −8.691408236617334, −8.150220360817124, −7.901761292775841, −6.864091114107134, −6.527705842544021, −5.665659270293035, −5.180487889805464, −4.386553282545156, −3.463422825550876, −2.831930548748932, −1.826443521832250, −0.9282028279896069, 0, 0.9282028279896069, 1.826443521832250, 2.831930548748932, 3.463422825550876, 4.386553282545156, 5.180487889805464, 5.665659270293035, 6.527705842544021, 6.864091114107134, 7.901761292775841, 8.150220360817124, 8.691408236617334, 9.551580272496767, 10.02013730466639, 10.67491580415552, 11.34284606157409, 11.61593874098150, 12.08213590865895, 12.71220331856734, 13.69808142637341, 13.95189986438204, 14.76524140195754, 15.31269743960033, 15.80216342066804, 16.40969326971862

Graph of the $Z$-function along the critical line