Properties

Label 2-149454-1.1-c1-0-38
Degree $2$
Conductor $149454$
Sign $1$
Analytic cond. $1193.39$
Root an. cond. $34.5455$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 3·5-s − 2·7-s + 8-s + 3·10-s + 5·11-s − 2·13-s − 2·14-s + 16-s + 4·17-s + 3·20-s + 5·22-s − 23-s + 4·25-s − 2·26-s − 2·28-s − 3·29-s − 8·31-s + 32-s + 4·34-s − 6·35-s + 4·37-s + 3·40-s + 2·41-s + 5·43-s + 5·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.34·5-s − 0.755·7-s + 0.353·8-s + 0.948·10-s + 1.50·11-s − 0.554·13-s − 0.534·14-s + 1/4·16-s + 0.970·17-s + 0.670·20-s + 1.06·22-s − 0.208·23-s + 4/5·25-s − 0.392·26-s − 0.377·28-s − 0.557·29-s − 1.43·31-s + 0.176·32-s + 0.685·34-s − 1.01·35-s + 0.657·37-s + 0.474·40-s + 0.312·41-s + 0.762·43-s + 0.753·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(149454\)    =    \(2 \cdot 3^{2} \cdot 19^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1193.39\)
Root analytic conductor: \(34.5455\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 149454,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.823376980\)
\(L(\frac12)\) \(\approx\) \(6.823376980\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
19 \( 1 \)
23 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 13 T + p T^{2} \) 1.47.an
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 15 T + p T^{2} \) 1.79.ap
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.49195240655743, −12.86000351642381, −12.39253623002826, −12.17927369621524, −11.54907519578007, −10.94967249719956, −10.46670289223390, −9.932328493714863, −9.466655492060887, −9.221020841122666, −8.751141858742066, −7.741966380308440, −7.363931557437999, −6.853292904844087, −6.131984997022388, −6.065431134566557, −5.499044952066133, −4.962535512725476, −4.209708861025025, −3.664959306045235, −3.306721250779607, −2.361111485465671, −2.130308640533131, −1.322406266001268, −0.6935385588591620, 0.6935385588591620, 1.322406266001268, 2.130308640533131, 2.361111485465671, 3.306721250779607, 3.664959306045235, 4.209708861025025, 4.962535512725476, 5.499044952066133, 6.065431134566557, 6.131984997022388, 6.853292904844087, 7.363931557437999, 7.741966380308440, 8.751141858742066, 9.221020841122666, 9.466655492060887, 9.932328493714863, 10.46670289223390, 10.94967249719956, 11.54907519578007, 12.17927369621524, 12.39253623002826, 12.86000351642381, 13.49195240655743

Graph of the $Z$-function along the critical line