Properties

Label 2-149454-1.1-c1-0-33
Degree $2$
Conductor $149454$
Sign $-1$
Analytic cond. $1193.39$
Root an. cond. $34.5455$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 8-s − 2·10-s − 6·11-s − 7·13-s + 16-s + 17-s − 2·20-s − 6·22-s + 23-s − 25-s − 7·26-s − 2·29-s − 4·31-s + 32-s + 34-s + 10·37-s − 2·40-s − 5·41-s − 43-s − 6·44-s + 46-s + 4·47-s − 7·49-s − 50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s − 0.632·10-s − 1.80·11-s − 1.94·13-s + 1/4·16-s + 0.242·17-s − 0.447·20-s − 1.27·22-s + 0.208·23-s − 1/5·25-s − 1.37·26-s − 0.371·29-s − 0.718·31-s + 0.176·32-s + 0.171·34-s + 1.64·37-s − 0.316·40-s − 0.780·41-s − 0.152·43-s − 0.904·44-s + 0.147·46-s + 0.583·47-s − 49-s − 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(149454\)    =    \(2 \cdot 3^{2} \cdot 19^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1193.39\)
Root analytic conductor: \(34.5455\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 149454,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
19 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 7 T + p T^{2} \) 1.13.h
17 \( 1 - T + p T^{2} \) 1.17.ab
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.29699999825143, −13.20772777814032, −12.54839245349145, −12.31088016952759, −11.75449489027353, −11.25970081789080, −10.89601540310881, −10.18973700773768, −9.923332850027845, −9.403490714303672, −8.564751292835030, −8.030543541757155, −7.613712181901468, −7.348462768184921, −6.887316376385973, −6.001706316931711, −5.511568296869710, −5.065345054977171, −4.603139486030015, −4.151240362723449, −3.349798980124847, −2.904330448028133, −2.377095079183023, −1.845542247204088, −0.6139339446003913, 0, 0.6139339446003913, 1.845542247204088, 2.377095079183023, 2.904330448028133, 3.349798980124847, 4.151240362723449, 4.603139486030015, 5.065345054977171, 5.511568296869710, 6.001706316931711, 6.887316376385973, 7.348462768184921, 7.613712181901468, 8.030543541757155, 8.564751292835030, 9.403490714303672, 9.923332850027845, 10.18973700773768, 10.89601540310881, 11.25970081789080, 11.75449489027353, 12.31088016952759, 12.54839245349145, 13.20772777814032, 13.29699999825143

Graph of the $Z$-function along the critical line