| L(s)  = 1  |     − 3·3-s     − 5-s     − 7-s     + 6·9-s     + 11-s         + 3·15-s     − 3·17-s     + 19-s     + 3·21-s     + 2·23-s     + 25-s     − 9·27-s     + 29-s     − 3·31-s     − 3·33-s     + 35-s     − 7·37-s         + 10·41-s     + 8·43-s     − 6·45-s     + 2·47-s     − 6·49-s     + 9·51-s     − 53-s     − 55-s     − 3·57-s     + 6·59-s  + ⋯ | 
 
| L(s)  = 1  |     − 1.73·3-s     − 0.447·5-s     − 0.377·7-s     + 2·9-s     + 0.301·11-s         + 0.774·15-s     − 0.727·17-s     + 0.229·19-s     + 0.654·21-s     + 0.417·23-s     + 1/5·25-s     − 1.73·27-s     + 0.185·29-s     − 0.538·31-s     − 0.522·33-s     + 0.169·35-s     − 1.15·37-s         + 1.56·41-s     + 1.21·43-s     − 0.894·45-s     + 0.291·47-s     − 6/7·49-s     + 1.26·51-s     − 0.137·53-s     − 0.134·55-s     − 0.397·57-s     + 0.781·59-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 5 |  \( 1 + T \)  |    | 
 | 11 |  \( 1 - T \)  |    | 
 | 13 |  \( 1 \)  |    | 
| good | 3 |  \( 1 + p T + p T^{2} \)  |  1.3.d  | 
 | 7 |  \( 1 + T + p T^{2} \)  |  1.7.b  | 
 | 17 |  \( 1 + 3 T + p T^{2} \)  |  1.17.d  | 
 | 19 |  \( 1 - T + p T^{2} \)  |  1.19.ab  | 
 | 23 |  \( 1 - 2 T + p T^{2} \)  |  1.23.ac  | 
 | 29 |  \( 1 - T + p T^{2} \)  |  1.29.ab  | 
 | 31 |  \( 1 + 3 T + p T^{2} \)  |  1.31.d  | 
 | 37 |  \( 1 + 7 T + p T^{2} \)  |  1.37.h  | 
 | 41 |  \( 1 - 10 T + p T^{2} \)  |  1.41.ak  | 
 | 43 |  \( 1 - 8 T + p T^{2} \)  |  1.43.ai  | 
 | 47 |  \( 1 - 2 T + p T^{2} \)  |  1.47.ac  | 
 | 53 |  \( 1 + T + p T^{2} \)  |  1.53.b  | 
 | 59 |  \( 1 - 6 T + p T^{2} \)  |  1.59.ag  | 
 | 61 |  \( 1 - 3 T + p T^{2} \)  |  1.61.ad  | 
 | 67 |  \( 1 - 8 T + p T^{2} \)  |  1.67.ai  | 
 | 71 |  \( 1 + T + p T^{2} \)  |  1.71.b  | 
 | 73 |  \( 1 + 6 T + p T^{2} \)  |  1.73.g  | 
 | 79 |  \( 1 - 10 T + p T^{2} \)  |  1.79.ak  | 
 | 83 |  \( 1 - 10 T + p T^{2} \)  |  1.83.ak  | 
 | 89 |  \( 1 - 3 T + p T^{2} \)  |  1.89.ad  | 
 | 97 |  \( 1 + 4 T + p T^{2} \)  |  1.97.e  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.40940548188903, −12.80796847261486, −12.62536432605552, −12.11712005647096, −11.63158772226944, −11.18347270817162, −10.90013555241680, −10.41378486175681, −9.901683567734063, −9.247248758770443, −8.962335672792404, −8.159805685583992, −7.531943316035698, −7.079405436549171, −6.669274466078430, −6.151162572788888, −5.759755745795533, −4.992885161709636, −4.870623751956110, −3.929801076087622, −3.822947494757995, −2.820883446370082, −2.109688538027411, −1.240988948519838, −0.6840331095534201, 0, 
0.6840331095534201, 1.240988948519838, 2.109688538027411, 2.820883446370082, 3.822947494757995, 3.929801076087622, 4.870623751956110, 4.992885161709636, 5.759755745795533, 6.151162572788888, 6.669274466078430, 7.079405436549171, 7.531943316035698, 8.159805685583992, 8.962335672792404, 9.247248758770443, 9.901683567734063, 10.41378486175681, 10.90013555241680, 11.18347270817162, 11.63158772226944, 12.11712005647096, 12.62536432605552, 12.80796847261486, 13.40940548188903