Properties

Label 2-148720-1.1-c1-0-32
Degree $2$
Conductor $148720$
Sign $-1$
Analytic cond. $1187.53$
Root an. cond. $34.4606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 5-s − 7-s + 6·9-s + 11-s + 3·15-s − 3·17-s + 19-s + 3·21-s + 2·23-s + 25-s − 9·27-s + 29-s − 3·31-s − 3·33-s + 35-s − 7·37-s + 10·41-s + 8·43-s − 6·45-s + 2·47-s − 6·49-s + 9·51-s − 53-s − 55-s − 3·57-s + 6·59-s + ⋯
L(s)  = 1  − 1.73·3-s − 0.447·5-s − 0.377·7-s + 2·9-s + 0.301·11-s + 0.774·15-s − 0.727·17-s + 0.229·19-s + 0.654·21-s + 0.417·23-s + 1/5·25-s − 1.73·27-s + 0.185·29-s − 0.538·31-s − 0.522·33-s + 0.169·35-s − 1.15·37-s + 1.56·41-s + 1.21·43-s − 0.894·45-s + 0.291·47-s − 6/7·49-s + 1.26·51-s − 0.137·53-s − 0.134·55-s − 0.397·57-s + 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(148720\)    =    \(2^{4} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1187.53\)
Root analytic conductor: \(34.4606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 148720,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
7 \( 1 + T + p T^{2} \) 1.7.b
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.40940548188903, −12.80796847261486, −12.62536432605552, −12.11712005647096, −11.63158772226944, −11.18347270817162, −10.90013555241680, −10.41378486175681, −9.901683567734063, −9.247248758770443, −8.962335672792404, −8.159805685583992, −7.531943316035698, −7.079405436549171, −6.669274466078430, −6.151162572788888, −5.759755745795533, −4.992885161709636, −4.870623751956110, −3.929801076087622, −3.822947494757995, −2.820883446370082, −2.109688538027411, −1.240988948519838, −0.6840331095534201, 0, 0.6840331095534201, 1.240988948519838, 2.109688538027411, 2.820883446370082, 3.822947494757995, 3.929801076087622, 4.870623751956110, 4.992885161709636, 5.759755745795533, 6.151162572788888, 6.669274466078430, 7.079405436549171, 7.531943316035698, 8.159805685583992, 8.962335672792404, 9.247248758770443, 9.901683567734063, 10.41378486175681, 10.90013555241680, 11.18347270817162, 11.63158772226944, 12.11712005647096, 12.62536432605552, 12.80796847261486, 13.40940548188903

Graph of the $Z$-function along the critical line