Properties

Label 2-1456-1.1-c1-0-30
Degree $2$
Conductor $1456$
Sign $-1$
Analytic cond. $11.6262$
Root an. cond. $3.40972$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s − 2·9-s − 3·11-s − 13-s + 4·17-s − 2·19-s − 21-s − 23-s − 5·25-s − 5·27-s + 4·29-s − 9·31-s − 3·33-s + 3·37-s − 39-s − 5·41-s − 4·43-s − 9·47-s + 49-s + 4·51-s − 4·53-s − 2·57-s − 10·59-s + 5·61-s + 2·63-s − 11·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s − 2/3·9-s − 0.904·11-s − 0.277·13-s + 0.970·17-s − 0.458·19-s − 0.218·21-s − 0.208·23-s − 25-s − 0.962·27-s + 0.742·29-s − 1.61·31-s − 0.522·33-s + 0.493·37-s − 0.160·39-s − 0.780·41-s − 0.609·43-s − 1.31·47-s + 1/7·49-s + 0.560·51-s − 0.549·53-s − 0.264·57-s − 1.30·59-s + 0.640·61-s + 0.251·63-s − 1.34·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1456\)    =    \(2^{4} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(11.6262\)
Root analytic conductor: \(3.40972\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1456,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 9 T + p T^{2} \) 1.31.j
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.180246455905551274823414752906, −8.090946695882983429394031186652, −7.86106901905057460373915465638, −6.68837221260609580260058636515, −5.75343602406759559067566546527, −5.02101645933316463421059800388, −3.70736881607893429019058281380, −2.97429105377228843634074901438, −1.95742675999762562132181188496, 0, 1.95742675999762562132181188496, 2.97429105377228843634074901438, 3.70736881607893429019058281380, 5.02101645933316463421059800388, 5.75343602406759559067566546527, 6.68837221260609580260058636515, 7.86106901905057460373915465638, 8.090946695882983429394031186652, 9.180246455905551274823414752906

Graph of the $Z$-function along the critical line