Properties

Label 2-1456-1.1-c1-0-3
Degree $2$
Conductor $1456$
Sign $1$
Analytic cond. $11.6262$
Root an. cond. $3.40972$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 7-s − 3·9-s + 2·11-s − 13-s − 4·17-s + 19-s + 7·23-s + 4·25-s + 7·29-s + 5·31-s + 3·35-s + 4·37-s − 6·41-s − 9·43-s + 9·45-s + 7·47-s + 49-s + 11·53-s − 6·55-s − 2·61-s + 3·63-s + 3·65-s + 10·67-s + 7·73-s − 2·77-s − 79-s + ⋯
L(s)  = 1  − 1.34·5-s − 0.377·7-s − 9-s + 0.603·11-s − 0.277·13-s − 0.970·17-s + 0.229·19-s + 1.45·23-s + 4/5·25-s + 1.29·29-s + 0.898·31-s + 0.507·35-s + 0.657·37-s − 0.937·41-s − 1.37·43-s + 1.34·45-s + 1.02·47-s + 1/7·49-s + 1.51·53-s − 0.809·55-s − 0.256·61-s + 0.377·63-s + 0.372·65-s + 1.22·67-s + 0.819·73-s − 0.227·77-s − 0.112·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1456\)    =    \(2^{4} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(11.6262\)
Root analytic conductor: \(3.40972\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1456,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9710247088\)
\(L(\frac12)\) \(\approx\) \(0.9710247088\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 11 T + p T^{2} \) 1.53.al
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 - 11 T + p T^{2} \) 1.83.al
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.331145111588057450204254811998, −8.613139122500934973351512042328, −8.073835726380055285731119779302, −6.98310044294046265095518743449, −6.50563998187962013416614283559, −5.23123780073428658383368888507, −4.38489274585589665409638399826, −3.44945532176692215171653318021, −2.62011047372528918091083422316, −0.68655072835500181647361608872, 0.68655072835500181647361608872, 2.62011047372528918091083422316, 3.44945532176692215171653318021, 4.38489274585589665409638399826, 5.23123780073428658383368888507, 6.50563998187962013416614283559, 6.98310044294046265095518743449, 8.073835726380055285731119779302, 8.613139122500934973351512042328, 9.331145111588057450204254811998

Graph of the $Z$-function along the critical line