Properties

Label 2-1456-1.1-c1-0-12
Degree $2$
Conductor $1456$
Sign $-1$
Analytic cond. $11.6262$
Root an. cond. $3.40972$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 4·5-s + 7-s + 6·9-s − 11-s − 13-s + 12·15-s + 6·19-s − 3·21-s + 7·23-s + 11·25-s − 9·27-s − 4·29-s − 7·31-s + 3·33-s − 4·35-s + 9·37-s + 3·39-s − 3·41-s − 4·43-s − 24·45-s − 7·47-s + 49-s + 4·55-s − 18·57-s + 10·59-s + 61-s + ⋯
L(s)  = 1  − 1.73·3-s − 1.78·5-s + 0.377·7-s + 2·9-s − 0.301·11-s − 0.277·13-s + 3.09·15-s + 1.37·19-s − 0.654·21-s + 1.45·23-s + 11/5·25-s − 1.73·27-s − 0.742·29-s − 1.25·31-s + 0.522·33-s − 0.676·35-s + 1.47·37-s + 0.480·39-s − 0.468·41-s − 0.609·43-s − 3.57·45-s − 1.02·47-s + 1/7·49-s + 0.539·55-s − 2.38·57-s + 1.30·59-s + 0.128·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1456\)    =    \(2^{4} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(11.6262\)
Root analytic conductor: \(3.40972\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1456,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 + T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
5 \( 1 + 4 T + p T^{2} \) 1.5.e
11 \( 1 + T + p T^{2} \) 1.11.b
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.162315483614103273787951987036, −8.019717144694446458650941793028, −7.32725700724389409434800004032, −6.87500603561565348190797158795, −5.57083895378343704241467893841, −4.99578374211428834490250749588, −4.23747306929926209571755248157, −3.21368858070487213139767950208, −1.12784722592657566804209320755, 0, 1.12784722592657566804209320755, 3.21368858070487213139767950208, 4.23747306929926209571755248157, 4.99578374211428834490250749588, 5.57083895378343704241467893841, 6.87500603561565348190797158795, 7.32725700724389409434800004032, 8.019717144694446458650941793028, 9.162315483614103273787951987036

Graph of the $Z$-function along the critical line