Properties

Label 2-143650-1.1-c1-0-18
Degree $2$
Conductor $143650$
Sign $-1$
Analytic cond. $1147.05$
Root an. cond. $33.8681$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 5·7-s − 8-s − 2·9-s − 4·11-s − 12-s + 5·14-s + 16-s − 17-s + 2·18-s + 2·19-s + 5·21-s + 4·22-s + 8·23-s + 24-s + 5·27-s − 5·28-s + 5·31-s − 32-s + 4·33-s + 34-s − 2·36-s − 12·37-s − 2·38-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 1.88·7-s − 0.353·8-s − 2/3·9-s − 1.20·11-s − 0.288·12-s + 1.33·14-s + 1/4·16-s − 0.242·17-s + 0.471·18-s + 0.458·19-s + 1.09·21-s + 0.852·22-s + 1.66·23-s + 0.204·24-s + 0.962·27-s − 0.944·28-s + 0.898·31-s − 0.176·32-s + 0.696·33-s + 0.171·34-s − 1/3·36-s − 1.97·37-s − 0.324·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(143650\)    =    \(2 \cdot 5^{2} \cdot 13^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(1147.05\)
Root analytic conductor: \(33.8681\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 143650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
13 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + 5 T + p T^{2} \) 1.7.f
11 \( 1 + 4 T + p T^{2} \) 1.11.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 12 T + p T^{2} \) 1.37.m
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.39878471152515, −13.06642298953312, −12.64381070117720, −12.21764150265281, −11.63759936665303, −11.14468492544767, −10.56801118499685, −10.36822209629433, −9.814896924279251, −9.246640714088266, −8.907033807099115, −8.410210161309601, −7.724331025321174, −7.129239848578275, −6.807573330770868, −6.300131603392503, −5.698821095485672, −5.384496527212867, −4.760801180900756, −3.856102029112935, −3.212955307226022, −2.708191946864584, −2.526052656776540, −1.253885348567076, −0.5548094912255499, 0, 0.5548094912255499, 1.253885348567076, 2.526052656776540, 2.708191946864584, 3.212955307226022, 3.856102029112935, 4.760801180900756, 5.384496527212867, 5.698821095485672, 6.300131603392503, 6.807573330770868, 7.129239848578275, 7.724331025321174, 8.410210161309601, 8.907033807099115, 9.246640714088266, 9.814896924279251, 10.36822209629433, 10.56801118499685, 11.14468492544767, 11.63759936665303, 12.21764150265281, 12.64381070117720, 13.06642298953312, 13.39878471152515

Graph of the $Z$-function along the critical line