Properties

Label 2-142296-1.1-c1-0-17
Degree $2$
Conductor $142296$
Sign $1$
Analytic cond. $1136.23$
Root an. cond. $33.7081$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 9-s − 5·13-s − 15-s − 6·17-s − 19-s + 4·23-s − 4·25-s − 27-s − 29-s + 10·31-s + 37-s + 5·39-s + 8·43-s + 45-s − 47-s + 6·51-s + 8·53-s + 57-s + 3·59-s − 6·61-s − 5·65-s + 13·67-s − 4·69-s − 3·73-s + 4·75-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1/3·9-s − 1.38·13-s − 0.258·15-s − 1.45·17-s − 0.229·19-s + 0.834·23-s − 4/5·25-s − 0.192·27-s − 0.185·29-s + 1.79·31-s + 0.164·37-s + 0.800·39-s + 1.21·43-s + 0.149·45-s − 0.145·47-s + 0.840·51-s + 1.09·53-s + 0.132·57-s + 0.390·59-s − 0.768·61-s − 0.620·65-s + 1.58·67-s − 0.481·69-s − 0.351·73-s + 0.461·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 142296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 142296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(142296\)    =    \(2^{3} \cdot 3 \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1136.23\)
Root analytic conductor: \(33.7081\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 142296,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.532948975\)
\(L(\frac12)\) \(\approx\) \(1.532948975\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 3 T + p T^{2} \) 1.73.d
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.29289550614800, −13.01649084267851, −12.30631316179718, −12.05078194318934, −11.44618273214394, −11.05742583559552, −10.49172124032086, −10.04909544664467, −9.605833720666552, −9.120405290039940, −8.631802230490296, −7.957575902079256, −7.413607256946748, −6.976941511743255, −6.362901499815469, −6.114656818484056, −5.292223470199790, −4.936194173299937, −4.419046616716331, −3.928842405380027, −3.019930484415744, −2.266509214861757, −2.181328272709898, −1.071885343052907, −0.4185628910821925, 0.4185628910821925, 1.071885343052907, 2.181328272709898, 2.266509214861757, 3.019930484415744, 3.928842405380027, 4.419046616716331, 4.936194173299937, 5.292223470199790, 6.114656818484056, 6.362901499815469, 6.976941511743255, 7.413607256946748, 7.957575902079256, 8.631802230490296, 9.120405290039940, 9.605833720666552, 10.04909544664467, 10.49172124032086, 11.05742583559552, 11.44618273214394, 12.05078194318934, 12.30631316179718, 13.01649084267851, 13.29289550614800

Graph of the $Z$-function along the critical line