Properties

Label 2-142296-1.1-c1-0-10
Degree $2$
Conductor $142296$
Sign $1$
Analytic cond. $1136.23$
Root an. cond. $33.7081$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·5-s + 9-s − 2·13-s − 3·15-s − 17-s − 4·19-s − 6·23-s + 4·25-s − 27-s − 8·31-s − 2·37-s + 2·39-s − 6·41-s + 9·43-s + 3·45-s + 9·47-s + 51-s + 8·53-s + 4·57-s + 5·59-s − 10·61-s − 6·65-s − 13·67-s + 6·69-s − 12·71-s + 12·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.34·5-s + 1/3·9-s − 0.554·13-s − 0.774·15-s − 0.242·17-s − 0.917·19-s − 1.25·23-s + 4/5·25-s − 0.192·27-s − 1.43·31-s − 0.328·37-s + 0.320·39-s − 0.937·41-s + 1.37·43-s + 0.447·45-s + 1.31·47-s + 0.140·51-s + 1.09·53-s + 0.529·57-s + 0.650·59-s − 1.28·61-s − 0.744·65-s − 1.58·67-s + 0.722·69-s − 1.42·71-s + 1.40·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 142296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 142296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(142296\)    =    \(2^{3} \cdot 3 \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1136.23\)
Root analytic conductor: \(33.7081\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 142296,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.340674441\)
\(L(\frac12)\) \(\approx\) \(1.340674441\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 - 5 T + p T^{2} \) 1.89.af
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.42785931701716, −12.94032034376467, −12.34204988048246, −12.14107502155917, −11.50057508830286, −10.76629762212296, −10.55321411592464, −10.11539741494162, −9.599294244924364, −9.059222855563358, −8.770281900602853, −7.980828365088244, −7.358330676658983, −6.999716539238877, −6.254369322750445, −5.976743570720915, −5.519393130806207, −5.038615333503136, −4.290369129707500, −3.946874191530243, −3.039430702055832, −2.237050885321610, −2.021652337865590, −1.322064385073380, −0.3436522943427194, 0.3436522943427194, 1.322064385073380, 2.021652337865590, 2.237050885321610, 3.039430702055832, 3.946874191530243, 4.290369129707500, 5.038615333503136, 5.519393130806207, 5.976743570720915, 6.254369322750445, 6.999716539238877, 7.358330676658983, 7.980828365088244, 8.770281900602853, 9.059222855563358, 9.599294244924364, 10.11539741494162, 10.55321411592464, 10.76629762212296, 11.50057508830286, 12.14107502155917, 12.34204988048246, 12.94032034376467, 13.42785931701716

Graph of the $Z$-function along the critical line