Properties

Label 2-13650-1.1-c1-0-31
Degree $2$
Conductor $13650$
Sign $1$
Analytic cond. $108.995$
Root an. cond. $10.4401$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s − 7-s + 8-s + 9-s + 2·11-s + 12-s − 13-s − 14-s + 16-s − 6·17-s + 18-s + 4·19-s − 21-s + 2·22-s + 2·23-s + 24-s − 26-s + 27-s − 28-s + 6·29-s + 8·31-s + 32-s + 2·33-s − 6·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.603·11-s + 0.288·12-s − 0.277·13-s − 0.267·14-s + 1/4·16-s − 1.45·17-s + 0.235·18-s + 0.917·19-s − 0.218·21-s + 0.426·22-s + 0.417·23-s + 0.204·24-s − 0.196·26-s + 0.192·27-s − 0.188·28-s + 1.11·29-s + 1.43·31-s + 0.176·32-s + 0.348·33-s − 1.02·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(108.995\)
Root analytic conductor: \(10.4401\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 13650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.462273022\)
\(L(\frac12)\) \(\approx\) \(4.462273022\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.98831598011956, −15.49020783932526, −15.16167469608536, −14.30455722774342, −14.01581859009700, −13.39568362282779, −13.01668006204712, −12.21823251509567, −11.82565803322438, −11.19496832566536, −10.47588307341493, −9.838553217218854, −9.325592410184907, −8.563054914728343, −8.127470980441212, −7.140174643258967, −6.735720812165930, −6.266326254809653, −5.229046555776300, −4.699004178714773, −4.008928989580082, −3.275585124621611, −2.665881642063684, −1.884357194525093, −0.8192219115488724, 0.8192219115488724, 1.884357194525093, 2.665881642063684, 3.275585124621611, 4.008928989580082, 4.699004178714773, 5.229046555776300, 6.266326254809653, 6.735720812165930, 7.140174643258967, 8.127470980441212, 8.563054914728343, 9.325592410184907, 9.838553217218854, 10.47588307341493, 11.19496832566536, 11.82565803322438, 12.21823251509567, 13.01668006204712, 13.39568362282779, 14.01581859009700, 14.30455722774342, 15.16167469608536, 15.49020783932526, 15.98831598011956

Graph of the $Z$-function along the critical line