Properties

Label 2-13520-1.1-c1-0-23
Degree $2$
Conductor $13520$
Sign $-1$
Analytic cond. $107.957$
Root an. cond. $10.3902$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 3·7-s − 2·9-s − 11-s − 15-s + 17-s + 19-s + 3·21-s + 5·23-s + 25-s − 5·27-s + 3·29-s − 8·31-s − 33-s − 3·35-s + 9·37-s − 5·41-s − 9·43-s + 2·45-s − 8·47-s + 2·49-s + 51-s − 10·53-s + 55-s + 57-s − 3·59-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1.13·7-s − 2/3·9-s − 0.301·11-s − 0.258·15-s + 0.242·17-s + 0.229·19-s + 0.654·21-s + 1.04·23-s + 1/5·25-s − 0.962·27-s + 0.557·29-s − 1.43·31-s − 0.174·33-s − 0.507·35-s + 1.47·37-s − 0.780·41-s − 1.37·43-s + 0.298·45-s − 1.16·47-s + 2/7·49-s + 0.140·51-s − 1.37·53-s + 0.134·55-s + 0.132·57-s − 0.390·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13520\)    =    \(2^{4} \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(107.957\)
Root analytic conductor: \(10.3902\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 13520,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
13 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + T + p T^{2} \) 1.11.b
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.58727234897369, −15.85844101782024, −15.05024267073156, −14.88761257173031, −14.33150707183830, −13.84071816456701, −13.06725237495859, −12.69231399523790, −11.61859771342378, −11.51157114069622, −10.94954356700390, −10.19106555650271, −9.482640324043486, −8.739557637559049, −8.438737805032268, −7.684669446487089, −7.446165642663951, −6.442562272180687, −5.694358028846517, −4.907642802541237, −4.577063121024682, −3.395651011726596, −3.085644761654025, −2.065017869857931, −1.304038468395442, 0, 1.304038468395442, 2.065017869857931, 3.085644761654025, 3.395651011726596, 4.577063121024682, 4.907642802541237, 5.694358028846517, 6.442562272180687, 7.446165642663951, 7.684669446487089, 8.438737805032268, 8.739557637559049, 9.482640324043486, 10.19106555650271, 10.94954356700390, 11.51157114069622, 11.61859771342378, 12.69231399523790, 13.06725237495859, 13.84071816456701, 14.33150707183830, 14.88761257173031, 15.05024267073156, 15.85844101782024, 16.58727234897369

Graph of the $Z$-function along the critical line