Properties

Label 2-132800-1.1-c1-0-39
Degree $2$
Conductor $132800$
Sign $-1$
Analytic cond. $1060.41$
Root an. cond. $32.5639$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s − 2·9-s + 3·11-s − 4·13-s + 6·17-s + 2·19-s + 21-s − 9·23-s + 5·27-s + 6·29-s − 8·31-s − 3·33-s + 2·37-s + 4·39-s − 9·41-s − 2·43-s − 6·49-s − 6·51-s − 6·53-s − 2·57-s + 3·59-s + 61-s + 2·63-s − 8·67-s + 9·69-s + 4·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s − 2/3·9-s + 0.904·11-s − 1.10·13-s + 1.45·17-s + 0.458·19-s + 0.218·21-s − 1.87·23-s + 0.962·27-s + 1.11·29-s − 1.43·31-s − 0.522·33-s + 0.328·37-s + 0.640·39-s − 1.40·41-s − 0.304·43-s − 6/7·49-s − 0.840·51-s − 0.824·53-s − 0.264·57-s + 0.390·59-s + 0.128·61-s + 0.251·63-s − 0.977·67-s + 1.08·69-s + 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 132800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(132800\)    =    \(2^{6} \cdot 5^{2} \cdot 83\)
Sign: $-1$
Analytic conductor: \(1060.41\)
Root analytic conductor: \(32.5639\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 132800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
83 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.85181964224698, −13.20831957019922, −12.44165877732140, −12.15152360522942, −11.96529807017555, −11.42710781462551, −10.87651035756541, −10.18085320716760, −9.836138257228231, −9.593704798544447, −8.788240647179801, −8.363480350897183, −7.734017305160529, −7.341280541389470, −6.670945432124202, −6.145270590075050, −5.850637483924179, −5.117904358181451, −4.842301177915819, −4.000532661577274, −3.390424968608829, −3.046616703935311, −2.148304821110949, −1.567310910672007, −0.6888810750440949, 0, 0.6888810750440949, 1.567310910672007, 2.148304821110949, 3.046616703935311, 3.390424968608829, 4.000532661577274, 4.842301177915819, 5.117904358181451, 5.850637483924179, 6.145270590075050, 6.670945432124202, 7.341280541389470, 7.734017305160529, 8.363480350897183, 8.788240647179801, 9.593704798544447, 9.836138257228231, 10.18085320716760, 10.87651035756541, 11.42710781462551, 11.96529807017555, 12.15152360522942, 12.44165877732140, 13.20831957019922, 13.85181964224698

Graph of the $Z$-function along the critical line