Properties

Label 2-130050-1.1-c1-0-123
Degree $2$
Conductor $130050$
Sign $-1$
Analytic cond. $1038.45$
Root an. cond. $32.2250$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·7-s + 8-s + 2·11-s − 2·14-s + 16-s − 6·19-s + 2·22-s − 3·23-s − 2·28-s + 6·29-s + 6·31-s + 32-s + 5·37-s − 6·38-s + 9·41-s − 6·43-s + 2·44-s − 3·46-s − 2·47-s − 3·49-s + 3·53-s − 2·56-s + 6·58-s + 9·59-s − 7·61-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.755·7-s + 0.353·8-s + 0.603·11-s − 0.534·14-s + 1/4·16-s − 1.37·19-s + 0.426·22-s − 0.625·23-s − 0.377·28-s + 1.11·29-s + 1.07·31-s + 0.176·32-s + 0.821·37-s − 0.973·38-s + 1.40·41-s − 0.914·43-s + 0.301·44-s − 0.442·46-s − 0.291·47-s − 3/7·49-s + 0.412·53-s − 0.267·56-s + 0.787·58-s + 1.17·59-s − 0.896·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 130050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 130050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(130050\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1038.45\)
Root analytic conductor: \(32.2250\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 130050,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.69561438651661, −13.19174108679523, −12.83975114862769, −12.34606679752292, −11.80861079849770, −11.59100274753904, −10.76209843333976, −10.42617948090918, −9.964460253220834, −9.355689777070153, −8.924699012234950, −8.171107971205463, −7.951563318839657, −7.090252464328071, −6.600052417457421, −6.253136120871961, −5.921697041528885, −5.106618769306822, −4.452136610579136, −4.175239968629694, −3.557866145446313, −2.832361883299791, −2.483589018666930, −1.667898298577334, −0.9225205285923764, 0, 0.9225205285923764, 1.667898298577334, 2.483589018666930, 2.832361883299791, 3.557866145446313, 4.175239968629694, 4.452136610579136, 5.106618769306822, 5.921697041528885, 6.253136120871961, 6.600052417457421, 7.090252464328071, 7.951563318839657, 8.171107971205463, 8.924699012234950, 9.355689777070153, 9.964460253220834, 10.42617948090918, 10.76209843333976, 11.59100274753904, 11.80861079849770, 12.34606679752292, 12.83975114862769, 13.19174108679523, 13.69561438651661

Graph of the $Z$-function along the critical line