Properties

Label 2-12e3-1.1-c1-0-14
Degree $2$
Conductor $1728$
Sign $1$
Analytic cond. $13.7981$
Root an. cond. $3.71458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 7-s + 3·11-s + 4·13-s + 2·19-s − 6·23-s + 4·25-s + 6·29-s − 5·31-s + 3·35-s − 2·37-s + 6·41-s − 10·43-s + 6·47-s − 6·49-s + 9·53-s + 9·55-s − 12·59-s − 8·61-s + 12·65-s + 14·67-s − 7·73-s + 3·77-s − 8·79-s + 3·83-s + 18·89-s + 4·91-s + ⋯
L(s)  = 1  + 1.34·5-s + 0.377·7-s + 0.904·11-s + 1.10·13-s + 0.458·19-s − 1.25·23-s + 4/5·25-s + 1.11·29-s − 0.898·31-s + 0.507·35-s − 0.328·37-s + 0.937·41-s − 1.52·43-s + 0.875·47-s − 6/7·49-s + 1.23·53-s + 1.21·55-s − 1.56·59-s − 1.02·61-s + 1.48·65-s + 1.71·67-s − 0.819·73-s + 0.341·77-s − 0.900·79-s + 0.329·83-s + 1.90·89-s + 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1728\)    =    \(2^{6} \cdot 3^{3}\)
Sign: $1$
Analytic conductor: \(13.7981\)
Root analytic conductor: \(3.71458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1728,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.577750507\)
\(L(\frac12)\) \(\approx\) \(2.577750507\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.300538826904107531692188360431, −8.699511810288277483701861071116, −7.82087500680797002813709866504, −6.68641118928175950907657181471, −6.10265864740654543835243104495, −5.43217621063437274714591238543, −4.34994968190190118318545746782, −3.35914372705473359723249826168, −2.05899421145709367031472603742, −1.26980488075185704480426069120, 1.26980488075185704480426069120, 2.05899421145709367031472603742, 3.35914372705473359723249826168, 4.34994968190190118318545746782, 5.43217621063437274714591238543, 6.10265864740654543835243104495, 6.68641118928175950907657181471, 7.82087500680797002813709866504, 8.699511810288277483701861071116, 9.300538826904107531692188360431

Graph of the $Z$-function along the critical line