Properties

Label 2-124950-1.1-c1-0-135
Degree $2$
Conductor $124950$
Sign $-1$
Analytic cond. $997.730$
Root an. cond. $31.5868$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s + 12-s − 5·13-s + 16-s − 17-s − 18-s − 2·23-s − 24-s + 5·26-s + 27-s − 7·29-s + 9·31-s − 32-s + 34-s + 36-s − 4·37-s − 5·39-s + 11·41-s + 8·43-s + 2·46-s − 11·47-s + 48-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.288·12-s − 1.38·13-s + 1/4·16-s − 0.242·17-s − 0.235·18-s − 0.417·23-s − 0.204·24-s + 0.980·26-s + 0.192·27-s − 1.29·29-s + 1.61·31-s − 0.176·32-s + 0.171·34-s + 1/6·36-s − 0.657·37-s − 0.800·39-s + 1.71·41-s + 1.21·43-s + 0.294·46-s − 1.60·47-s + 0.144·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124950\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(997.730\)
Root analytic conductor: \(31.5868\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 124950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 5 T + p T^{2} \) 1.13.f
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 11 T + p T^{2} \) 1.41.al
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 11 T + p T^{2} \) 1.47.l
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 11 T + p T^{2} \) 1.59.l
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.87670293772523, −13.33950279409424, −12.60018259006135, −12.36324954958507, −11.92334622358037, −11.17546928038067, −10.83459432301211, −10.30331807121978, −9.606236613157815, −9.464577311215273, −9.070652443182989, −8.240559366914519, −7.846969353195539, −7.618063215164614, −6.892734707311173, −6.480663083557877, −5.854531519831550, −5.169872141303329, −4.602140674345389, −4.061878955791075, −3.315595999275786, −2.715503401896758, −2.240267235649428, −1.669742685655179, −0.7909149136831292, 0, 0.7909149136831292, 1.669742685655179, 2.240267235649428, 2.715503401896758, 3.315595999275786, 4.061878955791075, 4.602140674345389, 5.169872141303329, 5.854531519831550, 6.480663083557877, 6.892734707311173, 7.618063215164614, 7.846969353195539, 8.240559366914519, 9.070652443182989, 9.464577311215273, 9.606236613157815, 10.30331807121978, 10.83459432301211, 11.17546928038067, 11.92334622358037, 12.36324954958507, 12.60018259006135, 13.33950279409424, 13.87670293772523

Graph of the $Z$-function along the critical line