Properties

Label 2-123840-1.1-c1-0-13
Degree $2$
Conductor $123840$
Sign $1$
Analytic cond. $988.867$
Root an. cond. $31.4462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s − 3·11-s − 3·13-s − 17-s + 2·19-s − 23-s + 25-s + 9·31-s + 2·35-s + 12·37-s − 41-s − 43-s − 8·47-s − 3·49-s − 5·53-s + 3·55-s + 12·59-s + 12·61-s + 3·65-s + 13·67-s + 6·71-s − 8·73-s + 6·77-s − 8·79-s − 3·83-s + 85-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s − 0.904·11-s − 0.832·13-s − 0.242·17-s + 0.458·19-s − 0.208·23-s + 1/5·25-s + 1.61·31-s + 0.338·35-s + 1.97·37-s − 0.156·41-s − 0.152·43-s − 1.16·47-s − 3/7·49-s − 0.686·53-s + 0.404·55-s + 1.56·59-s + 1.53·61-s + 0.372·65-s + 1.58·67-s + 0.712·71-s − 0.936·73-s + 0.683·77-s − 0.900·79-s − 0.329·83-s + 0.108·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(123840\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 43\)
Sign: $1$
Analytic conductor: \(988.867\)
Root analytic conductor: \(31.4462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 123840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.198598975\)
\(L(\frac12)\) \(\approx\) \(1.198598975\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
43 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 - 12 T + p T^{2} \) 1.37.am
41 \( 1 + T + p T^{2} \) 1.41.b
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.25349781282869, −13.00643130042438, −12.81865773987406, −11.98258065877784, −11.62257240669643, −11.28228886144536, −10.52879187463176, −10.02223639543641, −9.740711603354464, −9.324665492049517, −8.390944977368440, −8.194307889088520, −7.637840561340855, −7.116284599271642, −6.489675518167059, −6.213774136748789, −5.272688851890477, −5.055418588685986, −4.329706241639593, −3.824070518522740, −3.032924296383038, −2.696215110616059, −2.114543100729303, −1.035139354527333, −0.3773613557128663, 0.3773613557128663, 1.035139354527333, 2.114543100729303, 2.696215110616059, 3.032924296383038, 3.824070518522740, 4.329706241639593, 5.055418588685986, 5.272688851890477, 6.213774136748789, 6.489675518167059, 7.116284599271642, 7.637840561340855, 8.194307889088520, 8.390944977368440, 9.324665492049517, 9.740711603354464, 10.02223639543641, 10.52879187463176, 11.28228886144536, 11.62257240669643, 11.98258065877784, 12.81865773987406, 13.00643130042438, 13.25349781282869

Graph of the $Z$-function along the critical line