Properties

Label 2-122694-1.1-c1-0-5
Degree $2$
Conductor $122694$
Sign $1$
Analytic cond. $979.716$
Root an. cond. $31.3004$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 2·7-s − 8-s + 9-s − 10-s − 12-s + 2·14-s − 15-s + 16-s − 5·17-s − 18-s + 5·19-s + 20-s + 2·21-s − 8·23-s + 24-s − 4·25-s − 27-s − 2·28-s + 2·29-s + 30-s − 3·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.755·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.288·12-s + 0.534·14-s − 0.258·15-s + 1/4·16-s − 1.21·17-s − 0.235·18-s + 1.14·19-s + 0.223·20-s + 0.436·21-s − 1.66·23-s + 0.204·24-s − 4/5·25-s − 0.192·27-s − 0.377·28-s + 0.371·29-s + 0.182·30-s − 0.538·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 122694 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 122694 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(122694\)    =    \(2 \cdot 3 \cdot 11^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(979.716\)
Root analytic conductor: \(31.3004\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 122694,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3559250574\)
\(L(\frac12)\) \(\approx\) \(0.3559250574\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
11 \( 1 \)
13 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.70016612020170, −12.85762143508111, −12.62596315680709, −11.94556430567553, −11.56083604422711, −11.19107776560173, −10.36633312945364, −10.19716008567212, −9.721119858884954, −9.209292484440180, −8.804608505286481, −8.088397521519080, −7.640250145361535, −7.013756827233911, −6.526335129684826, −6.212833481286941, −5.540991312434047, −5.172905320013973, −4.342615411494422, −3.691721994461198, −3.230098966138076, −2.223661867576686, −1.996265879252411, −1.122475325886453, −0.2235206016851431, 0.2235206016851431, 1.122475325886453, 1.996265879252411, 2.223661867576686, 3.230098966138076, 3.691721994461198, 4.342615411494422, 5.172905320013973, 5.540991312434047, 6.212833481286941, 6.526335129684826, 7.013756827233911, 7.640250145361535, 8.088397521519080, 8.804608505286481, 9.209292484440180, 9.721119858884954, 10.19716008567212, 10.36633312945364, 11.19107776560173, 11.56083604422711, 11.94556430567553, 12.62596315680709, 12.85762143508111, 13.70016612020170

Graph of the $Z$-function along the critical line