Properties

Label 2-1218-1.1-c1-0-5
Degree $2$
Conductor $1218$
Sign $1$
Analytic cond. $9.72577$
Root an. cond. $3.11861$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 2·5-s + 6-s + 7-s − 8-s + 9-s − 2·10-s + 11-s − 12-s + 13-s − 14-s − 2·15-s + 16-s + 2·17-s − 18-s − 19-s + 2·20-s − 21-s − 22-s + 9·23-s + 24-s − 25-s − 26-s − 27-s + 28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.894·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.632·10-s + 0.301·11-s − 0.288·12-s + 0.277·13-s − 0.267·14-s − 0.516·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s − 0.229·19-s + 0.447·20-s − 0.218·21-s − 0.213·22-s + 1.87·23-s + 0.204·24-s − 1/5·25-s − 0.196·26-s − 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1218 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1218\)    =    \(2 \cdot 3 \cdot 7 \cdot 29\)
Sign: $1$
Analytic conductor: \(9.72577\)
Root analytic conductor: \(3.11861\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1218,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.280903674\)
\(L(\frac12)\) \(\approx\) \(1.280903674\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 - T \)
29 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.750636650457613999857279771160, −9.019708957466045453666700520677, −8.230113202598052536406097684887, −7.15953407684935845381986827551, −6.49791822680995107940862041475, −5.60846649410397773373090401205, −4.85575760457774465109912609488, −3.41591857485656015479078198820, −2.06921955291521009176499334288, −1.02660567976177782004478306854, 1.02660567976177782004478306854, 2.06921955291521009176499334288, 3.41591857485656015479078198820, 4.85575760457774465109912609488, 5.60846649410397773373090401205, 6.49791822680995107940862041475, 7.15953407684935845381986827551, 8.230113202598052536406097684887, 9.019708957466045453666700520677, 9.750636650457613999857279771160

Graph of the $Z$-function along the critical line